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Abstract. We introduce a category of O-oriented supersingular elliptic curves and de-
rive properties of the associated oriented and nonoriented `-isogeny supersingular isogeny
graphs. As an application we introduce an oriented supersingular isogeny Diffie-Hellman
protocol (OSIDH), analogous to the supersingular isogeny Diffie-Hellman (SIDH) pro-
tocol and generalizing the commutative supersingular isogeny Diffie-Hellman (CSIDH)
protocol.
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1 Introduction

We introduce a category of supersingular elliptic curves oriented by an imaginary
quadratic order O, and derive properties of the associated oriented and nonori-
ented supersingular `-isogeny graphs. This permits one to derive a group ac-
tion on a set of oriented supersingular points, mapping to the set of nonoriented
supersingular points. As an application we introduce an oriented supersingular
isogeny Diffie-Hellman protocol (OSIDH), analogous to the supersingular isogeny
Diffie-Hellman (SIDH) of DeFeo and Jao [18] and generalizing the commutative
supersingular isogeny Diffie-Hellman (CSIDH) of Castryck, Lange, Martindale,
Panny and Renes [4], the latter based on the idea of group actions on sets by Cou-
veignes [8] and Rostovtsev-Stolbunov [26].

The idea of SIDH is to fix a large prime number p of the form p = `eAA `eBB f ± 1
for a small cofactor f and to let the two parties Alice and Bob take random walks
(i.e., isogenies chains) of length eA (or eB) in the `A-isogeny graph (or the `B-
isogeny graph, respectively) on the set of supersingular j-invariants defined over
Fp2 . In order to have the two key spaces of similar size `eAA ≈ `eBB , we need to
take `eAA ≈ `eBB ≈ √p. Since the total number of supersingular j-invariants is
around p/12, this implies that, for each party, the space of choices for the secret
key is limited to a fraction of the whole set of supersingular j-invariants over Fp2 .
In other words, in choosing their secrets, Alice and Bob can go only “halfway”
around the graph from the starting vertex j0.



2 L. Colò and D. Kohel

Recently, Castryck, Lange, Martindale, Panny and Rennes proposed another
key exchange protocol based on supersingular isogeny graphs over the prime field
Fp. We fix a prime of the form p = 4`1 · . . . · `t − 1 and an elliptic curve E/Fp
defined by the equation E : y2 = x3 + ax2 + x. The peculiarity of CSIDH is
that it works with curves defined over Fp and restricts the endomorphism rings
of such curves to the commutative subring consisting of Fp-rational endomor-
phisms. Starting from this setup, the scheme is an adaptation of the Couveignes
and Rostovtsev-Stolbunov idea.

A feature shared by SIDH and CSIDH is that the isogenies are constructed as
quotients of rational torsion subgroups: the secret path of length eA in the `A-
isogeny graph corresponds to a secret cyclic subgroup 〈A〉 ⊆ E [`eA ] where A is
a rational `eAA -torsion point on E. The need for rational points limits the choice of
the prime p and, thus, of the finite field we work on.

In this paper we want to describe a new cryptographic protocol, the OSIDH, de-
fined over an arbitrarily large subset of oriented supersingular elliptic curves over
Fp2 , which permits us to cover essentially all isomorphism classes of supersingular
elliptic curves and avoid conditions on the rational torsion subgroups.

2 Orientations, isogeny chains, and ladders

Let E be a supersingular elliptic curve over a finite field k of characteristic p, and
denote by End(E) the full endomorphism ring. We denote by End0(E) the Q-
algebra End(E) ⊗Z Q. We suppose that k contains Fp2 and E is in an isogeny
class such that Endk(E) = End(E). In particular we may suppose that k = Fp2

and that E is in the isogeny class of an elliptic curve E0/Fp.

Orientations

Let B be a quaternion algebra over Q ramified at p and∞, K a quadratic imagi-
nary field of discriminant ∆K , OK its maximal order and O an arbitrary order in
OK . We recall that B is unique up to isomorphism and if p is ramified or inert
in OK then K embeds in B. By hypothesis on E, there exists an isomorphism
End0(E) ∼= B.

Definition 2.1. A K-orientation on a supersingular elliptic curve E/k is a homo-
morphism ι : K ↪→ End0(E). AnO-orientation on E is a K-orientation such that
the image of the restriction of ι to O is contained in End(E). An O-orientation is
primitive if this restriction is an isomorphism with End(E) ∩ ι(K).
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Let φ : E → F be an isogeny of degree `. A K-orientation ι : K ↪→ End0(E)
determines a K-orientation φ∗(ι) : K ↪→ End0(F ) on F , defined by

φ∗(ι)(α) =
1
`
φ ◦ ι(α) ◦ φ̂.

Conversely, given K-oriented elliptic curves (E, ιE) and (F, ιF ) we say that an
isogeny φ : E → F is K-oriented if φ∗(ιE) = ιF , i.e. if the orientation on F is
induced by φ.

If E admits a primitive O-orientation by an order O in K, φ : E → F is
an isogeny then F admits an induced primitive O′-orientation for an order O′
satisfying

Z+ `O ⊆ O′ and Z+ `O′ ⊆ O.
We say that an isogeny φ : E → F is an O-oriented isogeny if O = O′.

If ` is prime, as direct analogue of Proposition 4.2.3 of [19], one of the following
holds:

• O = O′ and we say that ϕ is horizontal,

• O ⊂ O′ with index ` and we say that ϕ is ascending,

• O′ ⊂ O with index ` and we say that ϕ is descending.

Moreover if the discriminant of O is ∆, then there are exactly `−
(

∆

`

)
descending

isogenies. If O is maximal at `, then there are
(

∆

`

)
+ 1 horizontal isogenies, and

if O is nonmaximal at `, then there is exactly one ascending `-isogeny and no
horizontal isogenies.

Isogeny chains and ladders

LetE0/k be a fixed supersingular elliptic curve, equipped with anOK-orientation,
and let ` 6= p be a prime.

Definition 2.2. We define an `-isogeny chain of length n from E0 to E to be a
sequence of isogenies of degree `:

E0
φ0−−−−→ E1

φ1−−−−→ E2
φ2−−−−→ . . .

φn−1−−−−−−→ En = E.

We say that the `-isogeny chain is without backtracking if ker(φi+1 ◦ φi) 6= Ei[`]
for each i = 0, . . . , n−1, and say that the isogeny chain is descending (or ascend-
ing, or horizontal) if each φi is descending (or ascending, or horizontal, respec-
tively).
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Remark. Since the dual isogeny of φi, up to isomorphism, is the only isogeny
φi+1 satisfying ker(φi+1 ◦φi) = Ei[`], an isogeny chain is without backtracking if
and only if the composition of two consecutive isogenies is cyclic. Moreover, we
can extend this characterization in terms of cyclicity to the entire `-isogeny chain.

Lemma 2.3. The composition of the isogenies in an `-isogeny chain is cyclic if and
only if the `-isogeny chain is without backtracking.

Remark. If an isogeny φ is descending, then the unique ascending isogeny from
φ(E), up to isomorphism, is the dual isogeny φ̂, satisfying φ̂φ = [`]. As an
immediate consequence, a descending `-isogeny chain is automatically without
backtracking, and an `-isogeny chain without backtracking is descending if and
only if φ0 is descending.

Suppose that (Ei, φi) is an `-isogeny chain, with E0 equipped with an OK-
orientation ι0 : OK → End(E0). For each i, let ιi : K → End0(Ei) be the
inducedK-orientation on Ei, and we noteOi = End(Ei)∩ ιi(K) withO0 = OK .
In particular, if (Ei, φi) is a descending `-chain, then ιi induces an isomorphism

ιi : Z+ `iOK −→ Oi.

Let q be a prime different from p and ` that splits in OK , let q be a fixed prime
over q. For each i we set qi = ιi(q) ∩ Oi, and define

Ci = Ei[qi] = {P ∈ Ei[q] | ψ(P ) = 0 for all ψ ∈ qi}.

We define Fi = Ei/Ci, and let ψi : Ei → Fi, an isogeny of degree q. By
construction, it follows that φi(Ci) = Ci+1 for all i = 0, . . . , n− 1. In particular,
if (Ei, φi) is a descending `-ladder, then ιi induces an isomorphism

ιi : Z+ `iOK −→ Oi.

The isogeny ψ0 : E0 → F0 = E/C0 gives the following diagram of isogenies:

E0 E1 E2 En

F0

ψ0

φ0 φ1 φ2 φn−1

and for each i = 0, . . . , n − 1 there exists a unique φ′i : Fi → Fi+1 with kernel
ψi(ker(φi)) such that the following diagram commutes:
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Ci ⊆ Ei Ei+1 ⊇ Ci+1

Fi Fi+1

φi

ψi ψi+1
φ′i

This construction motivates the following definition.

Definition 2.4. An `-ladder of length n and degree q is a commutative diagram
of `-isogeny chains (Ei, φi) and (Fi, φ

′
i) of length n connected by q-isogenies

(ψi : Ei → Fi):

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψ0 ψ1 ψ2 ψn

We also refer to an `-ladder of degree q as a q-isogeny of `-isogeny chains, which
we express as ψ : (Ei, φi)→ (Fi, φ

′
i).

We say that an `-ladder is ascending (or descending, or horizontal) if the `-
isogeny chain (Ei, φi) is ascending (or descending, or horizontal, respectively).
We say that the `-ladder is level if ψ0 is a horizontal q-isogeny. If the `-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).

Lemma 2.5. An `-ladder is level if and only if End(Ei) = End(Fi) for all 0 ≤ i ≤
n. In particular, if an `-ladder ψ : (Ei, φ) → (Fi, φ

′
i) is level, then (Ei, φi) is

descending if and only if (Fi, φ′i) is descending.

3 Action of the class group

Let SS(p) denote the set of supersingular elliptic curves over Fp up to isomor-
phism, and let SSO(p) the set of O-oriented supersingular elliptic curves up to
K-isomorphism over Fp, and denote the subset of primitive O-oriented curves by
SSprO (p). The set SSO(p) admits a transitive group action:

C̀ (O)× SSO(p) SSO(p)

([a] , E) [a] · E = E/E[a]

where a is any representative ideal coprime to the index [OK : O] so that the
isogeny E → E/E[a] is horizontal. When restricted to primitive O-oriented
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curves, we obtain the following classical result, extending the standard result for
CM elliptic curves.

Proposition 3.1. The class group C̀ (O) acts faithfully and transitively on the set
of O-isomorphism classes of primitive O-oriented elliptic curves.

In particular, for fixed primitiveO-oriented E, we hence obtain a bijection of sets:

C̀ (O) SSprO (p)

[a] [a] · E

For any ideal class [a] and generating set {q1, . . . , qr} of small primes, coprime to
[OK : O], we can find an identity [a] = [qe1

1 · . . . · qerr ], in order to compute the
action via a sequence of low-degree isogenies.

Definition 3.2. We define a vortex to be an `-isogeny subgraph whose vertices are
isomorphism classes of O-oriented elliptic curves with `-maximal endomorphism
ring, equipped with the action of C̀ (O).

C`(O)

Figure 1. A vortex is an isogeny circle acted on and shuffled by C̀ (O).

Instead of considering the union of different isogeny graphs as in Couveignes [8]
and Rostovtsev-Stolbunov [26], we focus on one single prime ` and we think of
all the others as acting on the surface of the `-isogeny graph: the resulting object
is the union of `-isogeny craters mixing under the action of C̀ (O).

We define a whirlpool to be a complete `-isogeny graph of O-oriented elliptic
curves acted on by the class group.
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Figure 2. A whirlphool is an isogeny graph spinning under the action of C̀ (O).

The underlying graph of a whirlpool may be composed of several `-isogeny
orbits (craters), although the class group is transitive in any given isogeny class
(Fig. 5). The existence of multiple `-volcanoes is studied in [21] and [13] and the
set of all these `-volcanoes is called `-cordillera. As an example, we can consider
the set of elliptic curves E/F353 with 344 F353-rational points. We obtain two
different 2-volcanoes.

160 270

182 253 66 236

230 298

197 304 264 330

Figure 3. A 2-cordillera.

A whirlpool is the union of the two shuffled by the class group of Z[2
√
−82]. In

the following picture the blue lines indicate 7-isogenies while red lines correspond
to 13-isogenies.

160 270

182 253 66 236

230 298

197 304 264 330
264

236

66

330

304

182

253

197

Figure 4. A whirlpool.

In conclusion, we define a whirlpool to be an `-cordillera (black lines) acted on
by the class group (represented by colored lines).
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Figure 5. The isogeny graph may consists of different orbits.

4 Modular isogenies

In this section we consider the way in which we effectively represent and compute
isogenies. With the view to oriented isogenies, we focus on horizontal isogenies
with kernel E[q], where E is a primitive O-oriented elliptic curve and q a prime
ideal of ι(O). In what follows we suppress ι and identify O with ι(O).

Effective endomorphism rings and isogenies

We say a subring of End(E) is effective if we have explicit polynomial or rational
functions which represent its generators. The subring Z in End(E) is thus effec-
tive. Examples of effective imaginary quadratic subrings O ⊂ End(E), are the
subring O = Z[π] generated by Frobenius, for either an ordinary elliptic curve, or
a supersingular elliptic curve defined over Fp, or an elliptic curve obtained by CM
construction for an order O of small discriminant (in absolute value).

In the Couveignes [8] or the Rostovtsev–Stolbunov [26] constructions, or in the
CSIDH protocol [4], one works with the ring O = Z[π]. The disadvantage is that
for large finite fields, the class group of O is large and the primes q in O have no
small generators. For large p (and small q), the smallest generator of a prime q
of norm q is the endomorphism [q], of degree q2. The division polynomial ψq(x)
which cuts out the torsion moduleE[q] is of degree (q2−1)/2, and factoring ψq(x)
to find the kernel polynomial (see Kohel [19, Chapter 2]) of degree (q − 1)/2 for
E[q] is relatively expensive. As a consequence, in the SIDH protocol [18], the
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ordinary protocol of De Feo, Smith, and Kieffer [10], or the CSIDH protocol [4],
the curves are chosen such that the points of E[q] are defined over a small degree
extension κ/k, particularly [κ/k] ∈ {1, 2}, and working with rational points in
E(κ).

In the OSIDH protocol outlined below, we propose the use of an effective CM
order OK of class number 1. In particular every prime q of norm q is generated
by an endomorphism of the minimal degree q. For example we may take OK to
be the Eisenstein or Gaussian integers of discriminant −3 or −4, generated by an
automorphism. The kernel polynomial of degree (q − 1)/2 can be computed di-
rectly without need for a splitting field forE[q], and the computation of a generator
isogeny is a one-time precomputation.

Push forward isogenies

The extension of an endomorphism of E0 to an `-isogeny chain (Ei, φi) reduces
to the construction of a ladder. At each step we are given φi : Ei → Ei+1 and
ψi : Ei → Fi of coprime degrees, and need to compute

ψi+1 : Ei+1 → Fi+1 and φ′i : Fi → Fi+1.

Rather than working with elliptic curves and isogenies, we construct the oriented
graphs directly as points on a modular curve linked by modular correspondences
defined by modular polynomials.

Modular curves and isogenies

The use of modular curves for efficient computation of isogenies has an established
history (see Elkies [12]). For this purpose we represent isogeny chains and ladders
as finite sequences of points on the modular curve X = X(1) preserving the
relations given by a modular equation.

We recall that the modular curve X(1) ∼= P1 classifies elliptic curves up to
isomorphism, and the function j generates its function field. The family of elliptic
curves

E : y2 + xy = x3 − 36
(j − 1728)

x− 1
(j − 1728)

covers all isomorphism classes j 6= 0, 123 or∞, such that the fiber over j0 ∈ k is
an elliptic curve of j-invariant j0. The curves y2 + y = x3 and y2 = x3 + x deal
with the cases j = 0 and j = 1728.

The modular polynomial Φm(X,Y ) defines a correspondence in X(1)×X(1)
such that Φm(j(E), j(E′)) = 0 if and only if there exists a cyclic m-isogeny φ
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from E to E′, possibly over some extension field. The curve in X(1)×X(1) cut
out by Φm(X,Y ) = 0 is a singular image of the modular curveX0(m) parametriz-
ing such pairs (E, φ).
Remark. The modular curve X(1) can be replaced by any genus 0 modular curve
X parametrizing elliptic curves with level structure. Lifting the modular polyno-
mials back to X of higher level (but still genus 0) has an advantage of reducing the
size of the corresponding modular polynomials Φm(X,Y ).

In the case of CSIDH, the authors use X = X0(4), with a modular function
a ∈ k(X0(4)) to parametrize the family of curves

E : y2 = x(x2 + ax+ 1),

together with a cyclic subgroup C ⊂ E of order 4, whose generators are cut out
by x = 1. The map X → X(1) is given by

j =
28(a2 − 3)3

(a− 2)(a+ 2)
·

The approach via modular isogenies methods of this section can be adapted as well
to the CSIDH protocol.

Definition 4.1. A modular `-isogeny chain of length n over k is a finite sequence
(j0, j1, . . . , jn) in k such that Φ`(ji, ji+1) = 0 for 0 ≤ i < n. A modular `-ladder
of length n and degree q over k is a pair of modular `-isogeny chains

(j0, j1, . . . , jn) and (j′0, j
′
1, . . . , j

′
n),

such that Φq(ji, j
′
i) = 0.

Clearly an `-isogeny chain (Ei, φi) determines the modular `-isogeny chain
(ji = j(Ei)), but the converse is equally true.

Proposition 4.2. If (j0, . . . , jn) is a modular `-isogeny chain over k, and E0/k is
an elliptic curve with j(E0) = j0, then there exists an `-isogeny chain (Ei, φi)
such that ji = j(Ei) for all 0 ≤ i ≤ n.

Given any modular `-isogeny chain (ji), elliptic curve E0 with j(E0) = j0, and
isogeny ψ0 : E0 → F0, it follows that we can construct an `-ladder ψ : (Ei, φi)→
(Fi, φ

′
i) and hence a modular `-isogeny ladder. In fact the `-ladder can be effi-

ciently constructed recursively from the modular `-isogeny chain (j0, . . . , jn) and
(j′0, . . . , j

′
i), by solving the system of equations

Φ`(j
′
i, Y ) = Φq(ji+1, Y ) = 0,

for Y = j′i+1. A computation of the polynomial gcd yields the generically unique
solution.
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5 OSIDH

We consider an elliptic curve E0/k (k = Fp2) with anOK-orientation by an effec-
tive ring OK of class number 1, e.g. j = 0 or j = 123 (for which OK = Z[ζ3] or
Z[i]), small prime `, and a descending `-isogeny chain from E0 to E = En. The
OK-orientation on E0 and `-isogeny chain induces isomorphisms

ιi : Z+ `iOK → Oi ⊂ End(Ei),

and we set O = On. By hypothesis on E0/k (the class number of OK is 1), any
horizontal isogeny ψ0 : E0 → F0 is, up to isomorphism F0 ∼= E0, an endomor-
phism.

For a small prime q, we push forward a q-endomorphism φ0 ∈ End(E0), to a
q-isogeny ψ : (Ei, φi)→ (Fi, φ

′
i).

E0

E1

E2

En

φ0

φ1

φ2

φn−1

OK

F0 = E0

ψ0 F1
φ′0

ψ1 F2
φ′1

ψ2

Fn

φ′2

φ′n−1

ψn

By sending q ⊂ OK to ψ0 : E0 → F0 = E0/E0[q] ∼= E0, and pushing forward
to ψn : En → Fn, we obtain the effective action of C̀ (O) on `-isogeny chains of
length n from E0. In order to have the action of C̀ (O) cover a large portion of the
supersingular elliptic curves, we require `n ∼ p, i.e., n ∼ log`(p).

Recall. The previous estimates are based on two very important results. Observe
that the number of oriented elliptic curves that we can reach after n steps equals
the class number h(On) of On = Z+ `nOK . It is well known [9, §7.D] that:

h(mOK) =
h(OK)m[
O×K : O×

] ∏
p|m

(
1−

(
∆K

p

)
1
p

)
(5.1)
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where [7, VI.3]

O×K =


{±1} if ∆K < −4
{±1,±i} if ∆K = −4
{±1,±ζ3,±ζ2

3} if ∆K = −3

⇒
[
O×K : O×

]
=


1 if ∆K < −4
2 if ∆K = −4
3 if ∆K = −3

On the other hand, we know that the number of supersingular elliptic curves over
Fp2 is given by the following formula [28, V.4]:

#SS(p) =
[ p

12

]
+


0 if p ≡ 1 mod 12
1 if p ≡ 5, 7 mod 12
2 if p ≡ 11 mod 12

Therefore, in our case

h(`nOK) =
1 · `n
2 or 3

(
1−

(
∆K

`

)
1
`

)
=
[ p

12

]
+ ε =⇒ p ∼ `n

To realise the class group action, it suffices to replace the above `-ladder with
its modular `-ladder.

j0

j1

j2

jn

`

`

`

`

OK

j′0

q j′1`

q
`

q

j′n

`

`

q


Φ`(j1, j2) = 0
Φ`(j

′
1, Y ) = 0

Φq(j2, Y ) = 0

At the first index for which j′i = j(Ei/Ei[qi]) is distinguished from j′′i = j(Ei/Ei[q̄i]),
that is, [qi] 6= [q̄i] in C̀ (Oi), we can solve iteratively for j′i+1 from j′i and ji+1 using
the equations:

Φ`(j
′
i, Y ) = Φq(ji+1, Y ) = 0.

The action of primes q through C̀ (O) can be precomputed by its action on these
initial segments which permits us to separate the action of q and q̄, hence assures
a unique solution to the above system.
Remark. How many steps one can expect before q and q̄ act differently?
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E0 E0
E0

E′′1 E′1
E1

qq

q̄

q2

Thus, E′i 6= E′′i if and only if q2 ∩ Oi is not principal and the probability that a
random ideal in Oi is principal is 1/h(Oi). In fact, we can do better; we write
OK = Z[ω] and we observe that if q2 was principal, then

q2 = N(q2) = N(a+ b`iω)

since it would be generated by an element of Oi = Z+ `iOK . Now

N(a+ b`i) = a2 ± abt`i + b2s`2i where ω2 + tω + s = 0

Thus, as soon as `2i > q2 we are guaranteed that q2 is not principal.

5.1 A first naive protocol

We now present the OSIDH cryptographic protocol based on this construction. We
first describe a simplified version as intermediate step. The reason for doing that
is twofold. On one hand it permits us to observe how the notions introduced so
far lead to a cryptographic protocol, and on the other hand it highlights the critical
security considerations and identifies the computationally hard problems on which
the security is based.

As described at the beginning of the section, we fix a maximal order OK in a
quadratic imaginary field K of small discriminant ∆K and a large prime p such
that

(
∆K
p

)
6= 1. Further, the two parties agree on an elliptic curve E0 with ef-

fective maximal order OK embedded in the endomorphism ring and a descending
`-isogeny chain:

E0 −→ E1 −→ E2 −→ · · · −→ En.

Recall. In practice, we will fix OK to be either Z[i] or Z[ζ3].
Alice privately chooses a horizontal endomorphism ψA = ψ0 : E0 → F0 = E0,

and pushes it forward to an `-ladder of length n:

E0 E1 E2 En

F0 F1 F2 Fn

φ0 φ1 φ2 φn−1

φ′0 φ′1 φ′2 φ′n−1

ψA
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The `-isogeny chain (Fi) is sent to Bob, who choses an endomorphism ψB , and
sends the resulting `-isogeny chain (Gi) to Alice. Each applies the private endo-
morphism to obtain (Hi) = ψB · (Fi) = ψA · (Gi), and H = Hn is the shared
secret.

In the following picture the blue arrows correspond to the orientation chosen
throughout by Alice while the red ones represent the choice made by Bob.

E0

F0

G0

H0

E1

F1

G1

H1

E2

F2

G2

H2

En

Fn

Gn

Hn

PUBLIC DATA: A chain of `-isogenies E0 → E1 → · · · → En

ALICE BOB
Choose a smooth
endomorphism of
E0 in OK

E0

F0

E0

G0

Push it forward to
depth n

F0 → F1 → · · · → Fn︸ ︷︷ ︸
ψA

G0 → G1 → · · · → Gn︸ ︷︷ ︸
ψB

Exchange data

(Gi) (Fi)

Compute shared
secret

Compute ψA · (Gi) Compute ψB · (Fi)

In the end, Alice and Bob share a new chain E0 → H1 → · · · → Hn

This naive protocol presents a weak point: since E0 is choosen in a very peculiar
way, we know End(E0) and, at each step, we can also deduce

Z+ `End(Ei) ⊂ End(Ei+1) = End(Fi+1)

Thus knowing Z + `nEnd(E0) ⊂ End(Fn), we can construct End(Fn) and this
gives us enough information to construct Alice’s private key ψA.

Theorem 5.1 ([15, Theorem 4.1]). Let E and EA be supersingular elliptic curves
over Fp2 such that E [`n] ⊆ E(Fp2) and there is an isogeny ψA : E → EA of
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degree `n. Suppose there is no isogeny φ : E → EA of degree strictly less than `n.
Then, given an explicit description of End(E) and End(EA), there is an efficient
algorithm to compute ψA.

We observe that there is another approach to this problem which uses only prop-
erties of the ideal class group. Suppose we have a K-descending `-isogeny chain

E0 −→ E1 −→ . . . −→ En

with
End(E0) ) OK = O0 ⊇ O1 ⊇ . . . ⊇ On ' Z+ `nOK

This induces a sequence at the level of class groups

C̀ (On) · · · C̀ (Oi) · · · C̀ (OK)

' ' '

(OK/`
nOK)×

Ō×K(Z/`nZ)× · · · (OK/`
iOK)

×

Ō×K(Z/`iZ)×
· · · {1}

In particular, there exists a surjection

C̀ (Oi+1) '
(
OK/`i+1OK

)×
Ō×K (Z/`i+1Z)×

−−−→→
(
OK/`iOK

)×
Ō×K (Z/`iZ)×

' C̀ (Oi)

whose kernel has an easy description. First of all we have to distinguish two
different situations: the map ψ : C̀ (O1)→ C̀ (OK) has kernel

F×
`2/F×` of order `+ 1 if ` is inert(
F×` × F×`

)
/F×` of order `− 1 if ` splits

(F` [ξ])× /F×` of order ` if ` is ramified

where ξ2 = 0. Roughly speaking, ψ is an intersection composed with a normaliza-
tion; it is studied in [9, §7.D] and [22, §12]. Its kernel is the basis for a public key
cryptosystem proposed in 1999 [16] [23] - NICE - and a signature scheme [17],
both using non-maximal imaginary quadratic orders.

For i > 1, the surjection described above has cyclic kernel of order ` by virtue
of the class number formula (5.1).

We notice that, at every step, our group is then growing by a factor `; indeed, it
is possible to prove that

C̀ (Oi+1) ' C̀ (Oi)⊕ ker (C̀ (Oi+1) � C̀ (Oi))
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Figure 6. Construction of Alice’s secret key

This means that if we have already constructed some representative for ψA modulo
`iOK , we can easily lift it and find ψA mod `i+1OK .

In the end, it turns out that we only need to solve multiple instaces of the discrete
logarithm problem in a group of order ` as in Pohlig-Hellman algorithm [24] and
in the generalization of Teske [29].

Once a representative for ψA mod `nOK is known, we can search for an effi-
cient (smooth) representative for ψA

ψA ≡ ψn1
1 ψn2

2 · . . . · ψnt
t mod `nOK

with degψi = qi small.
In conclusion, this first naïve protocol was found to be insecure. The problem

is that we make the two parties share the knowledge of the entire chains (Fi) and
(Gi). The question becomes: how can we avoid this while still giving the other
party enough information?

5.2 The OSIDH protocol

We now detail how to send enough public data to compute the isogenies ψA and
ψB on G = Gn and F = Fn, respectively, without revealing the `-isogeny chains
(Fi) and (Gi). The setup remains the same with a public choice of OK-oriented
elliptic curve E0 and `-isogeny chain

E0 → E1 → · · · → En.
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Moreover, a set of primes p1, . . . , pt splitting in OK is fixed.
The first step consists of choosing the secret keys; these are represented by a

sequence of integers (e1, . . . , et) such that |ei| ≤ r. The bound r is taken so that
the number (2r+1)t of curves that can be reached is sufficiently large. This choice
of integers enables Alice to compute a new elliptic curve

Fn =
En

En
[
pe1

1 · · · pett
]

by means of constructing the following commutative diagram

E0

E1

En

E0
E0[p1]

=

E0

F
(1)
n

E0
E0[p

e1
1 ]

=

E0

F
(e1)
n

E0
E0[p

e1
1 p1

2]

=
E0

F
(e1,1)
n

E0
E0[p

e1
1 p

e2
2 ]

=

E0

F
(e1,e2)
n

E0
E0[p

e1
1 ...p

et-1
t−1]

=

E0

F
(e1,...,et-1)
n

E0
E0[p

e1
1 ...p

et
t ]

=

E0

F0

F1

Fn

F
(e1,...,et)
n

At this point the idea is to exchange curves Fn and Gn and to apply the same
process again starting from the elliptic curve received from the other party. Un-
fortunately, this is not enough to get to the same final elliptic curve. Once Alice
receives the unoriented curve Gn computed by Bob she also needs additional in-
formation for each prime pi:

Bob’s curve
Gn

Horizontal pi-isogeny
with kernel Gn[p̄i]

Horizontal pi-isogeny
with kernel Gn[pi]

but she has no information as to which directions — out of pi+1 total pi-isogenies
— to take as pi and p̄i. For this reason, once that they have constructed their
elliptic curves Fn and Gn, they precompute, for each prime pi, the pi-isogeny
chains coming from p̄ji (denoted by the class p−ji ) and pji :

F
(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn → F

(1)
n,i → · · · → F

(r−1)
n,i → F

(r)
n,i ,

and

G
(−r)
n,i ← · · · ← G

(−1)
n,i ← Gn → G

(1)
n,i → · · · → G

(r−1)
n,i → G

(r)
n,i.
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Now Alice obtains from Bob the curve Gn and, for each i, the horizontal pi-
isogeny chains determined by the isogenies with kernels Gn[p

j
i ]. With this infor-

mation Alice can take e1 steps in the p1-isogeny chain and push forward all the
pi-isogeny chains for i > 1.
Remark. We recall that pushing forward means constructing a ladder which trans-
mits all the information about the commutative action of peii in the class group.

Gn p1

p2

p3

p4

G
(−1)
n,1 G

(1)
n,1

G
(1)
n,2

G
(−1)
n,2

G
(2)
n,1 G

(r)
n,1G

(−2)
n,1G

(e1)
n,1G

(−r)
n,1

G
(r)
n,2

G
(−r)
n,2

G
(e1,1)
n,2

G
(e1,e2)
n,2 G

(e2)
n,2

Alice repeats the process for all the pi’s every time pushing forward the isogenies
for the primes with index strictly bigger than i. Finally, she obtains a new elliptic
curve

Hn =
En

En
[
pe1+d1

1 · · · pet+dtt

]
Bob follows the same process with the public data received from Alice, in order
to compute the same curve Hn. Recall that, in the naive protocol, Alice and Bob
compute the group action on the full `-isogeny chains:
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E0 E1 E2 En E0 G1 G2 Gn

E0 F1 F2 Fn E0 H1 H2 Hn

A
li ce

A
li ce

Bob

Bob

In the refined OSIDH protocol, Alice and Bob share sufficient information to de-
termine the curve Hn without knowledge of the other party’s `-isogeny chain (Gi)
and (Fi), nor the full `-isogeny chain (Hi) from the base curve E0.

PUBLIC DATA: A chain of `-isogenies E0 → E1 → · · · → En and a
set of splitting primes p1, . . . , pt ⊆ O = End(En) ∩K ↪→ OK

ALICE BOB
Choose integers in
an interval [−r, r] (e1, . . . , et) (d1, . . . , dt)

Construct an
isogenous curve

Fn =
En

En
[
pe1

1 · · · pett
] Gn =

En

En
[
pd1

1 · · · pdtt
]

Precompute all
directions ∀ i Fn → F

(1)
n,i → · · · → F

(r)
n,1 Gn → G

(1)
n,i → · · · → G

(r)
n,1

... and their
conjugates

F
(−r)
n,i ← · · · ← F

(−1)
n,i ← Fn︸ ︷︷ ︸ G(−r)

n,i ← · · · ← G
(−1)
n,i ← Gn︸ ︷︷ ︸

Exchange data

Gn+directions Fn+directions

Compute shared
data

Takes ei steps in
pi-isogeny chain & push

forward information
for all j > i.

Takes di steps in
pi-isogeny chain & push

forward information
for all j > i.

In the end, both Alice and Bob share the same elliptic curve

Hn =
Fn

Fn
[
pd1

1 · · · pdtt
] = Gn

Gn
[
pe1

1 · · · pett
] = En

En
[
pe1+d1

1 · · · pet+dtt

] ·
Remark. We can read this scheme using the terminology of section 3.

After the choice of the secret key, we observe a vortex: Alice (respectively
Bob) acts on an isogeny crater (that in the case of OK = Z [ζ3] or Z [i] consists of
a single points) with the primes pe1

1 · . . . · pett (respectively qd1
1 · . . . · qdtt ).

This action is eventually transmitted along the `-isogeny chain and we get a
whirlphool. We can think of the isogeny volcano as rotating under the action
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F5

Fn
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E0/E0[p1] = E0

E0/E0[p
e1
1 ] = E0

E0/E0[p
e1
1 p2] = E0
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e1
1 pe22 ] = E0

E0/E0[p
e1
1 . . . p
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Figure 7. Graphic representation of OSIDH

of the secret keys and the initial `-isogeny path transforming into the two secret
isogeny chains.

6 Conclusion

By imposing the data of an orientation by an imaginary quadratic ring O, we
obtain an augmented category of supersingular curves on which the class group
C̀ (O) acts faithfully and transitively. This idea is already implicit in the CSIDH
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protocol, in which supersingular curves over Fp are oriented by the Frobenius
subring Z[π] ∼= Z[

√−p]. In contrast we consider an elliptic curve E0 oriented
by a CM order OK of class number one. To obtain a nontrivial group action, we
consider `-isogeny chains, on which the class group of an order O of large index
`n in OK acts, a structure we call a whirlpool. The map from `-isogeny chains to
its terminus forgets the structure of the orientation, and the original base curve E0,
giving rise to a generic supersingular elliptic curve. Within this general framework
we define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol,
which has fewer restrictions on the proportion of supersingular curves covered and
on the torsion group structure of the underlying curves. Moreover, the group action
can be carried out effectively solely on the sequences of moduli points (such as j-
invariants) on a modular curve, thereby avoiding expensive isogeny computations,
and is further amenable to speedup by precomputations of endomorphisms on the
base curve E0.
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