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Prerequisites on error correcting codes

Prerequisites on error correcting codes

A linear code is a vector subspace C ⊆ Fn
q:

n is its length;

k is its dimension as an Fq–vector space;
A t–decoder for C is an algorithm D taking as input x ∈ Fn

q and
returning:
• c ∈ C such that dH(x , c) 6 t if exists.
• “?” else.

Definition 1
The Hamming distance on Fn

q is defined by:

dH(x , y)
def
= ]{i ∈ {1, . . . , n} | xi 6= yi}.
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Prerequisites on error correcting codes

A classical operation

Definition 2
Let C ⊆ Fn

qm be a code. Its subfield subcode is defined by:

C ∩ Fn
q.

Very classical operation. Many algebraic codes derive from generalised
Reed–Solomon codes using this operation: Goppa codes, BCH codes,
Srivastava codes, etc...
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History of code–based cryptography

It starts with two articles

[1] E.R. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inform.
Theory 24(2), 1978.

[2] R.J. McEliece. A public key cryptosystem based on algebraic coding
theory. DSN Progress Report 44; 1978.

In the article [1]:

Theorem 1
The following problem is NP–complete:

Bounded decoding problem. Given C ⊆ Fn
q, y ∈ Fn

q and t > 0.
Does there exist c ∈ C such that

dH(c , y) 6 t?
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History of code–based cryptography

It starts with two articles

[1] E.R. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inform.
Theory 24(2), 1978.

[2] R.J. McEliece. A public key cryptosystem based on algebraic coding
theory. DSN Progress Report 44; 1978.

In the article [2], McEliece proposes a new public key encryption
scheme.
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History of code–based cryptography

McEliece presented in the literature

Secret key.
G , a structured k × n matrix whose rows span a code C ;
S ∈ GLk ;
P ∈ Sn.

Public key. (SGP, t);
Encryption m 7→ mSGP + e for a uniformly random e of weight t;
Decryption

Right multiply by P−1 : mSGP + e 7−→ mSG + eP−1;
decode to get mS ;
right multiply it by S−1 to get m.

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 8 / 80



History of code–based cryptography

This is what McEliece said!
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History of code–based cryptography

But... may be we should present it differently

F denotes a family of codes of length n and dimension k ;
S denotes a set “of secrets” with a surjective map C : S −→ F
sending a secret s ∈ S into a code C (s).
To any s ∈ S is associated a decoding algorithm D(s) for C (s)
correcting up to t errors.

Secret key s ∈ S;
Public key (G , t), where G denotes a k × n generator matrix of C (s);
Encryption m ∈ Fk

q 7−→ mG + e where e is a uniformly random word of
weight t.

Decryption Apply D(s) to mG + e to recover m.
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History of code–based cryptography

Example – Generalised Reed Solomon codes

Definition 2 (Generalised Reed–Solomon codes)

Let n, k be positive integers k 6 n. Let x = (x1, . . . , xn) ∈ Fn
q be a vector

with distinct entries and y = (y1, . . . , yn) ∈ (F×q )
n.

GRSk(x , y)
def
= {(y1f (x1), . . . , ynf (xn)) | deg(f ) < k} .

F the set of [n, k] GRS codes;
S = {(x , y) ∈ Fn

q × (F×q )n | ∀i 6= j , xi 6= xj};
D(s) is your favorite decoder for GRS, e.g. Berlekamp Welch
algorithm, with t = bn−k2 c·
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History of code–based cryptography

Example – Alternant codes

Definition 3 (Alternant codes)

Let x = (x1, . . . , xn) ∈ Fn
qm be a vector with distinct entries and

y = (y1, . . . , yn) ∈ (F×qm)
n. An alternant code of degree r is a code of the

form

Ar (x , y) = GRSr (x , y)⊥ ∩ Fn
q

= GRSn−r (x , y⊥) ∩ Fn
q

F the set of alternant codes of length n and degree r ;
S = {(x , y) ∈ Fn

q × (F×q )n | ∀i 6= j , xi 6= xj};
D(s) is your favorite decoder for alternant codes, e.g. Berlekamp
Welch algorithm.
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History of code–based cryptography

Example – Classical Goppa codes – McEliece (1978)

Definition 4 (Classical Goppa codes)

Let x = (x1, . . . , xn) ∈ Fn
qm be a vector with distinct entries and

g ∈ Fqm [x ]<t be a polynomial such that ∀i , g(xi ) 6= 0. The Goppa code
associated to (x , g) is defined as

G (x , g)
def
= Adeg g (x , g(x)−1) ∩ Fn

q

where g(x)−1 = (g(x1)−1, . . . , g(xn)−1)

S = {(x , g) | · · · };
etc...
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History of code–based cryptography

Example – MDPC codes

Definition 5 (QC-MDPC codes)

Let n be a positive even integer and f , g ∈ F2[X ]<n be two polynomials of
weight in O(

√
n). A [2n, n] QC-MDPC code is the kernel of the sparse

matrix  f0 f1 · · · fn−1 g0 g1 · · · gn−1
fn−1 f0 · · · fn−2 gn−1 g0 · · · gn−2
. . . . . . . . . . . . . . . . . .


F the set of [2n, n] MDPC, codes
S = {(f , g) ∈ Fq[x ]<n of weight O(

√
n)};

D(s) is your favorite decoder for MDPC codes, e.g. Bit Flipping
algorithm.
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History of code–based cryptography

Example – Algebraic geometry codes

Definition 6 (Algebraic geometry codes)

Let X be a smooth projective geometrically connected curve over Fq, G be
a divisor on X and P = (P1, . . . ,Pn) be a set of Fq–points of X . We define

CL(X ,P,G )
def
= {(f (P1), . . . , f (Pn)) | f ∈ L(G )}.

F the set of AG codes of length n from X .
S = {(P,G ) ∈ X (Fq)n × DivFq(X ) | ∀i 6= j ,Pi 6= Pj};
D(s) is your favorite decoder for AG codes, e.g. Error Correcting Pairs
algorithm.
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History of code–based cryptography

History – McEliece 1978

1978 : McEliece’s original proposal based on binary Goppa codes
(special case of alternant codes). Public key : 32kB for ≈ 65 bits of
security1.
2018 : NIST proposals :

Classic McEliece, public key 1 to 1.3 MByte for > 256 bits security.
NTS KEM, 319 KBytes for > 128 bits security.

During these 40 years many attempts to get shorter keys. How?

1With respect to Prange algorithm
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History of code–based cryptography

Idea 1 : Reducing the extension degree

Fqm

m

GRSk(x , y)

Fq GRSk(x , y) ∩ Fn
q

Fact. The larger the m the worse the parameters. But:

Case m = 1 is broken (Sidelnikov, Shestakov 1992);
Some specific cases of m = 2 and 3 called wild Goppa codes are
broken too:

C., Otmani, Tillich, 2014;
Faugère, Perret, de Portzamparc, 2014
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History of code–based cryptography

Idea 2 : Using codes with a non trivial automorphism group

In 2005, Gaborit proposes to use codes with a non trivial automorphism
group G.

Quasi–cyclic codes (QC–codes) : G = Z/`Z;
Quasi–dyadic codes (QD–codes) : G = (Z/2Z)γ .

Advantage. Permits to reduce the public key size with almost no
incidence on the security

w.r.t. message security attacks.
But, may affect the security w.r.t. key recovery attacks.
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History of code–based cryptography

Idea 2 : Using codes with a non trivial automorphism group

In 2005, Gaborit proposes to use odes with a non trivial automorphism
group G.

Caution! Some tempting choices of using large groups lead to key
recovery attacks:

QC–BCH codes: Otmani, Tillich, Dallot (2008);
QC–altenant codes : Faugère, Otmani, Perret, Tillich (2010);
QC and QD–alternant codes : Faugère, Otmani, Perret, Tillich, de
Portzamparc (2016).
DAGS (QD–Alternant codes): Barelli, C. (2018).
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History of code–based cryptography

Further constructions from GRS codes

Berger Loidreau, 2001. Subcodes of GRS codes.
Wieschebrink, 2006. Adds random columns in a GRS code’s
generator matrix.
Baldi, Bianchi, Chiaraluce, Rosenthal, Schipani, 2013. Right
multiply the GRS code by a sparse matrix.
Wang’s RLCE system, 2016. Replaces some columns of a GRS’s
generator matrix by linear combinations of GRS and random columns.
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History of code–based cryptography

Other families of codes

Sidelnikov 1994. Binary Reed Muller codes.
Janwa Moreno 1996. Algebraic geometry codes and their subfield
subcodes.
Misoczki, Tillich, Sendrier, Barreto 2012. QC–MDPC codes.

Remark
Non exhaustive list.
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History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken
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History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
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1994 : Sidelnikov
Proposes Reed-Muller codes

2007 : Minder Shokrollahi
Subexponential time attack on RM codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

2001 : Berger Loidreau
Propose subcodes of GRS codes

1996 : Janwa, Moreno
Propose AG codes and their subfield subcodes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 31 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno
Propose AG codes

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

and their subfield subcodes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 32 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

2008 : Faure Minder, Attack on AG codes for genus ≤ 2

and their subfield subcodes
Propose AG codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 33 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

2008 : Faure Minder, Attack on AG codes for genus ≤ 2

... and their subfield subcodes

2008 : Berger, Cayrel, Gaborit, Otmani
Propose QC alternant codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 34 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

... and their subfield subcodes

2008 : Berger, Cayrel, Gaborit, Otmani
Propose QC alternant codes

Propose q–ary “wild” Goppa codes
Otmani, Tillich, Dallot Faugère, Perret, Otmani, Tillich
Attacks on QC-codes

2010 : Bernstein, Lange Peters

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 35 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

... and their subfield subcodes

2008 : Berger, Cayrel, Gaborit, Otmani
Propose QC alternant codes

Propose q–ary “wild” Goppa codes
2010 : Bernstein, Lange Peters

Otmani, Tillich, Dallot Faugère, Perret, Otmani, Tillich
Attacks on QC-codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 36 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

... and their subfield subcodes

2008 : Berger, Cayrel, Gaborit, Otmani
Propose QC alternant codes

Propose q–ary “wild” Goppa codes
2010 : Bernstein, Lange Peters

Otmani, Tillich, Dallot Faugère, Perret, Otmani, Tillich
Attacks on QC-codes
Wieschebrink’s C ⋆ C attack

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 37 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2001 : Berger Loidreau
Propose subcodes of GRS codes

2005 : Gaborit
Quasi-cyclic subcodes of BCH codes

... and their subfield subcodes

2008 : Berger, Cayrel, Gaborit, Otmani
Propose QC alternant codes

Propose q–ary “wild” Goppa codes
2010 : Bernstein, Lange Peters

Otmani, Tillich, Dallot Faugère, Perret, Otmani, Tillich
Attacks on QC-codes
Wieschebrink’s C ⋆ C attack

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 38 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno
... and their subfield subcodes

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 39 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno
... and their subfield subcodes

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 40 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno
... and their subfield subcodes

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 41 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 42 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 43 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 44 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 45 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 46 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2
Faugère, Perret, Portzamparc : Some Goppa codes with m = 2, 3

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 47 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2
Faugère, Perret, Portzamparc : Some Goppa codes with m = 2, 3

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 48 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2
Faugère, Perret, Portzamparc : Some Goppa codes with m = 2, 3
Faugère, Otmani, Perret, Portzamparc, Tillich
Further attack on QC and QD codes

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 49 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2
Faugère, Perret, Portzamparc : Some Goppa codes with m = 2, 3
Faugère, Otmani, Perret, Portzamparc, Tillich
Further attack on QC and QD codes

Nov 2017 : NIST’s call for post quantum crypto

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 50 / 80



History of code–based cryptography

Chronology

1978 : McEliece Proposals
Attacks
Broken
Partially Broken

1996 : Janwa, Moreno

2010 : Bernstein, Lange Peters
Propose q–ary “wild” Goppa codes

2011 : Faugère, Gautier, Otmani, Perret, Tillich
Distinguisher for High rate Goppa codes

2012 : Misoczki, Tillich, Sendrier, Barreto
Propose MDPC codes

and their subfield subcodes
AG codes

2014 : C., Márquez–Corbella, Pellikaan : attack on AG codes
C., Otmani, Tillich : Goppa codes with m = 2
Faugère, Perret, Portzamparc : Some Goppa codes with m = 2, 3
Faugère, Otmani, Perret, Portzamparc, Tillich
Further attack on QC and QD codes

Nov 2017 : NIST’s call for post quantum crypto

etc...

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 51 / 80



Algebraic cryptanalysis in code–based cryptography

1 History of code–based cryptography

2 Algebraic cryptanalysis in code–based cryptography

3 How to design secure schemes with codes?
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Algebraic cryptanalysis in code–based cryptography

Theoretical security analysis of McEliece encryption

Security proofs consist in reducing to the Bounded decoding problem
under the following assumption:

Assumption. The uniform distribution on the public [n, k] codes
in family F is computationally indistinguishable from the uniform
distribution on the whole family of [n, k] codes.
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Algebraic cryptanalysis in code–based cryptography

Two types of attacks

In algebraic code–based cryptography, there are two major types of attacks:

Message recovery attacks based on generic decoding algorithms.
Exponential time if t = Θ(n).
Key recovery attacks : ad hoc methods to recover s ∈ S such that
the public key Cpub = C (s).

We focus on key recovery attacks in the present talk.
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Algebraic cryptanalysis in code–based cryptography

Sidelnikov Shestakov, 1992

Efficient key recovery attack on GRS codes.

Idea.
From a generator matrix G of a code GRSk(x , y),
compute two minimum weight codewords whose supports are close,
they correspond to split polynomials with many common roots. The
ratio of these polynomial is a homography. This provides information
on x .

Note.
Computing minimum weight codewords is hard but...
is only Gaussian elimination for GRS codes!

This is a polynomial time distinguisher!
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Algebraic cryptanalysis in code–based cryptography

Some attacks deriving from Sidelnikov Shestakov

Minder Shokrollahi 2007. Broke Sidelnikov’s proposal based on binary
Reed Muller codes. Subexponential time attack;
Faure Minder, Broke AG codes from hyperelliptic curves. The cost of
the attack is exponential in the curve’s genus.

In red: due to the cost of computing minimum weight codewords.
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Algebraic cryptanalysis in code–based cryptography

Algebraic attacks by polynomial system solving

Idea. A code Ar (x , y) code is contained in the kernel of a matrix of the
form:

H =


y1 · · · yn
x1y1 · · · xnyn
...

...
x r−1
1 y1 · · · x r−1

n yn


Put xi , yi as formal variables Xi ,Yi and solve the polynomial system:

H(Xi ,Yi ) · tG = 0

For usual McEliece parameters, the resolution of such a polynomial
system is out of reach. But...

if you use alternant codes with
automorphisms...

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 57 / 80



Algebraic cryptanalysis in code–based cryptography

Algebraic attacks by polynomial system solving

Idea. A code Ar (x , y) code is contained in the kernel of a matrix of the
form:

H =


y1 · · · yn
x1y1 · · · xnyn
...

...
x r−1
1 y1 · · · x r−1

n yn


Put xi , yi as formal variables Xi ,Yi and solve the polynomial system:

H(Xi ,Yi ) · tG = 0

For usual McEliece parameters, the resolution of such a polynomial
system is out of reach. But...

if you use alternant codes with
automorphisms...

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 57 / 80



Algebraic cryptanalysis in code–based cryptography

Algebraic attacks by polynomial system solving

Idea. A code Ar (x , y) code is contained in the kernel of a matrix of the
form:

H =


y1 · · · yn
x1y1 · · · xnyn
...

...
x r−1
1 y1 · · · x r−1

n yn


Put xi , yi as formal variables Xi ,Yi and solve the polynomial system:

H(Xi ,Yi ) · tG = 0

For usual McEliece parameters, the resolution of such a polynomial
system is out of reach. But... if you use alternant codes with
automorphisms...

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 57 / 80



Algebraic cryptanalysis in code–based cryptography

Algebraic attacks on alternant codes with automorphisms

Given a code C ⊆ Fn
q with a group action G, one can define:

The invariant code

C G
def
= {x ∈ C | ∀σ ∈ G, σ(x) = x}.

If the action of G is public, then C G is computable in polynomial time.
Moreover,

Theorem 1 (Faugère, Otmani, Perret, Portzamparc, Tillich 2014)

If C = Ar (x , y) then C G = Ar ′(xG , yG) for r ′ ≈ r
|G| and for some xG , yG

of lengths ≈ n
|G| .

Theorem 2 (Barelli, 2018)

If C = CL(X ,P,G ) then C G = CL(X/G,PG ,GG) where |PG | ≈ |P||G| and
degGG ≈ degG

|G| . (+ This results extends to subfield subcodes).
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Algebraic cryptanalysis in code–based cryptography

Algebraics attacks on the invariant code

The algebraic attack can be performed on the invariant code and is
easier (less variables, equations of smaller degree).

Attacks on quasi–cyclic and quasi–dyadic Goppa/alternant codes,
(Faugère, Otmani, Perret, Portzamparc, Tillich 2010, 2014)

Deducing the secret on the original code from the structure of the
invariant code can be done in polynomial time (Barelli, WCC 2017).
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Algebraic cryptanalysis in code–based cryptography

?–product and square codes

In Fn
q we denote by ? the component wise product:

u ? v def
= (u1v1, . . . , unvn).

Then, the star product of two codes A ,B ⊆ Fn
q:

A ?B
def
= Span{a ? b | a ∈ A , b ∈ B}

If A = B, then we denote by A 2 def
= A ?A .
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Algebraic cryptanalysis in code–based cryptography

The why of ?–product

Algebraic codes are evaluation codes from an algebra
Fq[X ] (GRS, alternant codes),
Fq[X1, . . . ,Xn] (Reed–Muller codes)
Ring OS of regular functions on an open subset of a curve (AG codes
and their subcodes)

Idea. Import the ring structure at the level of codes to get further
information on the public key.
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Algebraic cryptanalysis in code–based cryptography

A wonderful distinguisher

Theorem 3 (Cascudo, Cramer, Mirandola, Zémor 2013)

Let R be a random [n, k]–code then

Prob
(

dim R2 < min

(
n,

(
k + 1
2

)))
−→ 0. (n, k →∞)

Theorem 4

For x , y ∈ Fn
q × (F×q )n,

GRSk(x , y)2 = GRS2k−1(x , y ? y).

Remark

Similar result for AG codes CL(X ,P,G )2 = CL(X ,P, 2G ) under some
conditions on degG .
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Algebraic cryptanalysis in code–based cryptography

First use of ? Wieschebrink 2010

On Berger Loidreau system:
Public key C ⊆ GRSk(x , y) of codimension ` ≈ 5;
Secret key s = (x , y).

Fact.
C 2 = GRSk(x , y)2 with a high probability.

Wieschebrink’s attack.
Compute C 2;
Perform Sidelnikov Shestakov attack on C 2 to recover (x , y ? y).
Deduce (x , y).
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Algebraic cryptanalysis in code–based cryptography

Other attacks based on the raw ?–product distinguisher

Wieschebrink’s scheme (C., Gautier, Gaborit, Otmani, Tillich, 2015);
BBCRS scheme (C., Gautier, Otmani, Tillich, 2015);
RLCE scheme (C. Lequesne, Tillich, 2019)
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Algebraic cryptanalysis in code–based cryptography

Distinguisher and filtration attack

Illustrative example on GRS codes. Suppose you know the codes
GRSk(x , y) (Fq[X ]6k−1)

GRSk−1(x , y) (Fq[X ]6k−2)

You’d like to compute
GRSk−2(x , y) (Fq[X ]6k−3)

Then note that

GRSk−2(x , y) ? GRSk(x , y) ⊆ GRSk(x , y)2

Indeed :
(k − 3) + (k − 1) = 2(k − 2).
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Algebraic cryptanalysis in code–based cryptography

Distinguisher and filtration attack

GRSk−2(x , y) can be computed as the set

Cond(GRSk(x , y),GRSk−1(x , y)2)
def
={

z ∈ Fn
q | z ? GRSk(x , y) ⊆ GRSk−1(x , y)2}

Then reiterate the process to deduce the filtration

GRSk(x , y) ⊇ GRSk(x , y) ⊇ · · · ⊇ GRSr (x , y) ⊇ · · ·

Remark
There is no reason to know both GRSk(x , y) and GRSk−1(x , y) but
GRSk−1(x , y) can be replaced by a shortening of GRSk(x , y) at one
position.
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Algebraic cryptanalysis in code–based cryptography

Applications

Alternative attack on GRS codes (C., Gautier, Gaborit, Otmani,
Tillich, 2015);
AG codes and their subcodes (C., Márquez–Corbella, Pellikaan,
2014–17);
Wild Goppa codes for m = 2 (C. Otmani, Tillich, 2014–17);

Remark
No more need to compute minimum weight codewords. Succeeds where
Sidelnikov Shestakov fails!
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How to design secure schemes with codes?

1 History of code–based cryptography

2 Algebraic cryptanalysis in code–based cryptography

3 How to design secure schemes with codes?

A. Couvreur Cryptanalysis in code–based crypto Nutmic 2019 68 / 80



How to design secure schemes with codes?

Algebraic codes

AG Codes

Subfield Subcodes of AG codes

Alternant codes

Codes

Goppa

Classical
GRS codes
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How to design secure schemes with codes?

Sidelnikov Shestakov 1992

AG Codes

Subfield Subcodes of AG codes

Alternant codes

Codes

Goppa

Classical
GRS codes
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How to design secure schemes with codes?

Faure Minder 2008

Subfield Subcodes of AG codes

Alternant codes

Codes

Goppa

Classical
AG Codes

g ≤ 2

GRS codes
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How to design secure schemes with codes?

C. Márquez–Corbella, Pellikaan, 2014
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How to design secure schemes with codes?

C. Otmani, Tillich & Faugère, Perret, Portzamparc 2014
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How to design secure schemes with codes?

Other point of view : subcodes of GRS codes.

Decreasing dimension of the subcode

Subcodes of GRS codes

. . . . . .(m = 1)

GRS Alt

(m = 2) m = 3 m ≫ 1
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How to design secure schemes with codes?

Other point of view : subcodes of GRS codes.

Decreasing dimension of the subcode

Faugère, Otmani, Perret, Tillich distinguisher
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How to design secure schemes with codes?

How to evaluate the security of algebraic codes?

Security analysis framework
Sufficiently many codes in the family, even up to permutation
(Sendrier’s support splitting algorithm);

Low weight codewords are hard to compute (avoid,
Sidelnikov–Shestakov like attacks).
No square code distinguisher.

C 2, (C⊥)2 and their shortenings should behave like random codes.

If you use some automorphis group, check the above properties for
both C and C G .
How to resist to attacks by algebraic systems solving? Difficult
question...
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How to design secure schemes with codes?

What is still surviving?

Algebraic world Binary Goppa codes (NIST’s Classic McEliece and
NTS KEM)
Goppa codes for m� 2.
Goppa codes with a “small” automorphism group
Subfield subcodes of AG codes

Advantages : Short ciphertexts, no decoding failure.

Probabilistic world Quasi–cyclic MDPC codes;

Advantages : short keys, especially designed for
cryptography, somehow simpler security analysis.

Other paradigms HQC, RQC : do not rely on indistinguishability
assumption: promising application of algebraic codes!
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How to design secure schemes with codes?

Thanks for your attention!
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How to design secure schemes with codes?

Questions?
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