NutMiC’19, June, 2019

Verifiable Delay Functions:

How to Slow Things Down (Verifiably)

Dan Boneh

Stanford University

What is a VDF?

(verifiable delay function)

Intuition: a function X — Y that
(1) takes time T to evaluate, even with polynomial parallelism,
(2) the output can be verified efficiently

* Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofrr (paralleltimeT)

* Verify(pp, X, y, 1) — {yes, no} (time poly(A, log T))

Security Properties (simplified) (g 50mmesnsingFiscias,

* Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofrm (parallel time T)

* Verify(pp, X, y, 1) — {yes, no} (time poly(A, log T))

“Uniqueness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, I’) = yes

then y=y’

“e-Sequentiality”: for all parallel algs. A, time(A) < (1-€)-time(Eval),

for random x€X, A cannot distinguish Eval(pp, X) from a random yeY

Application: lotteries

Problem: generating verifiable randomness in the real world?

Standard solutions

are unsatisfactory

N "mOo7rs
4 33 12 21 27

Broken method: distributed generation

c rZ = {O’ 1 }256

Public Bulletin Board (blockchain)

l

output rand=r,Pr, P - Pr, € {0,1}¢

Problem: Zoe controls value of rand !!

Solution: slow things down with a VDF w15

Public Bulletin Board (blockchain)

l

hash(r,,r,, -, r,) € {0,1}>°°

L. —— output (rand,)

Solution: slow things down with a VDF

 Submissions: startat 12:00pm, end at 12:10pm
 VDF delay: about one hour (> 10 minutes)

Sequentiality: ensures Zoe cannot bias output

Uniqueness: ensures no ambiguity about output

Public Bulletin Board (blockchain)

hash(r,,r,, -, r,) € {0,1}?° —»L—» (rand, 1)

Being implemented and deployed ...

/) [ErERe
N/

Construction 1: from hash functions

Hash function H: {0,1}?°®* — {0,1}**® (e.g. SHA256)

* pp = (public parameters for a SNARK)

HM(x) = HHHHH(... (HH(X))) ...)

| /
I

T times (sequential work)

* Eval(pp, x): output y=HT(x) , proof 1= (SNARK)

* Verify(pp, X, y, m): accept if SNARK proof is valid

Construction 1: from hash functions

Problem: computing SNARK proof it takes longer than
computing y = H(N(x)

= adversary can compute y long before Eval(pp, x) finishes

Simple solution using log,(T)-way parallelism [B-Bonneau-Biinz-Fisch’18]

Construction 2: exponentiation

[Why‘:’\(_} G: finite abelian group

e Assumption 1: the order of G cannot be efficiently computed

i = 9
pp = (G, H:X— G) @gs; €.g. T=10 J

* Eval(pp, x): output Y — H(SB)(QT) c G

need proof Tt = (proof of correct exponentiation)

[Pietrzak’18, Wesolowski’18]

Proof of correct exponentiation (r=power of2)

Method 1: [Pietrzak’l8] g,h € G, claim: h = g(zT)

™~
Prover - Verifier implies
u = g(z)
» heed to check:
- g(zT/Z) =y
random 7 € {1,...,2128)} 1 ,@™7» = p,

ve_rify both at once!

— AT — T - — o7
Set g¢=9g'u, hi =uh. Recursively prove | hy = g

Proof of correct exponentiation (s

Prover (g, h) . Verifier (g, h)
u = g(z /2)
> © gi=g'u, hy=u'h
. 2T/2 r
claim: hy = gi) 2T/
Uy = gq . — oy he— uTih
p g2 =9 » N2
1
E (log T rounds) .
claim: hpgr = glzogT compute: hlogTr Glog T

. 2
accept if NogT = GiogT

Proof 1= (u,uy, ..., Ujog) ‘

Proof of correct exponentiation (s

As a non-interactive proof:

* Proof m= (u, Uq, -, Ulog T) via the Fiat-Shamir heuristic

r; =hash(g, h, u,7r,...,uj_1,7_1, U;), i=1,..1logT

Computing the proof m: fast, only O(W/T) steps
e By storing /T values while computing g(zT)

T
Theorem [BBF’18] (informal): suppose h # g(2)
but prover P convinces verifier (with non-negligible probability €).

Then there is an algorithm, whose run time is twice that of P,
that outputs (with prob. €?)

(w,d) where 1 # w € G and d <212 suchthat w? =1

assumption 2
i
[|
so: hardtofind 1 # w € G of known order = protocol is secure

Assumption 2 is necessary for security

Suppose some (w,d) isknownwhere 1#w € G and w? = 1.

= Prover can cheat with probability 1/d

How? | set h=w- g(zT) + g(zT) , U= w- g(ZT/Z)

Now, verifier falsely accepts whenever r+ 1 = 27/2 (mod d)

L (2T/2) y
why? inthiscase: h; =g, holds with prob. 1/d

uh \\(g’”h)(ZT/ %)

More generally ... nothing special about squaring

(. finite abelian group.

¢: G = G an endomorphism

g hea,

claim: h = ¢M(g)

Prover (g, h)

u= ¢T3(g

Verifier (g, h)

‘,

>

g1 = gru ’ h1= urh

T
claim: hy = ¢T/2(g)) .

‘Proof = (U, Ug, e, Uog T) ‘

Proof of correct exponentiation: method 2

Method 2: [Wesolowski’1l8] g,h € G, claim: h = g(ZT)

Prover Verifier
{ « Primes(214%)

<

let q=2"/¢] u=ga ‘compute 7 = 2Tmod ¢

acceptif: ut-g"=nh

‘ Proof = (u) ‘ single element!

Need assumption 2: hard to find 1 +# w € G of known order
... but is not sufficient

Security relies on a stronger assumption
called the adaptive root assumption.

Candidate abelian groups

Goal: group G with no elements #1 of known order

* n € Z, unknown factorization. G, = (Z/n)*/{*+1}

Con: trusted setup to generaten (or a large random n)

* p =3 (mod 4) prime. Gp = class group of (@(w/—p).
Con: no setup, but complex operation (slow verify)

Pro: can switch group every few minutes = smaller params

Candidate abelian groups

N

Goal: group G { Note DJB parallelism for exponentiation in G,

w

* n € Z, unknown factorization. G, = (Z/n)*/{*+1}

J

Con: trusted setup to generaten (or a large random n)

* p =3 (mod 4) prime. Gp = class group of Q(w/—p).
Con: no setup, but complex operation (slow verify)

Pro: can switch group every few minutes = smaller params

Assumption 2 in class groups?

hardtofind 1 #w € Gp of known small order

Cohen-Lenstra: frequency d divides |G|
d=3: 44%, d=05: 24%, d=7: 16%

Open: When 3 divides |G|,

can we efficiently find an element of order 3 in G),?

The Chia class group challenge

Recent class number record: 512-bit discriminant
* Beullens, Kleinjung, Vercauteren 2019:

The Chia challenge: computing larger class numbers

* Are there interesting discriminants to include in challenge?

https://github.com/Chia-Network/vdf-competition

VDF construction 3: isogenies
[De Feo, Masson, Petit, Sanso’ 19]

Degree-2 supersingular isogeny classes over I, : (p = 7 mod 8)
(curves and isogenies defined over [F),)

J1 .13 -

J

L] II p
, Ja
Vi 4.
/ l y R
! / /
] U /
L —— o
!
II [F
/ € p

VDF construction 3: isogenies
[De Feo, Masson, Petit, Sanso’ 19]

Degree-2 supersingular isogeny classes over F, : (p = 7 mod 8)
E/F,
—Q—
< T steps
+
E'JF,

o:E—>E, ¢:E' -E, deg(p)=2T

Tools

¢ .
|E(IFp)| — |E,(IFp)| =p+1 E - _ FE’

¢

Let £|p+ 1 bealarge primefactorofp +1

Fact: Forall Pe E[¢]nE(F,) and P €E'[¢]nE'(F,)

e,(P, ¢(P")) = éy(¢(P), P)
1 Y) ! Y]
non-degenerate pairing on E non-degenerate pairing on E’

The VDF (over [Fp) [De Feo, Masson, Petit, Sanso’ 19]

Setup: (1) choose P € E[¢]NE(F,), compute P’ = ¢(P)
(2) H:X — E'[£] n E'(F,)

pp = (E,E' H,¢,P, P’)

No proof it !! }

Eval(pp, x) = cﬁ(H (x)) (T steps)

Verify(pp, x, y): acceptif | e,(P,y) = e,(P’,H(x))

and y € E[£] N E(IFp).

Does Eval take T steps?

Can an attacker find a low degree isogeny y:E' - E ??

Answer: vyes, if End: (E) is known [Kohel, Lauter, Petit, Tignol, 2014]

Solution: use a trusted setup to generate a

supersingular E/IF, s.t. Ends,(E) is unknown

Summary and open problems

VDFs are an important new primitive

* Several elegant constructions, but looking for more.

Problem 1: is there a simple fully post-quantum VDF?

Problem 2: other groups of unknown order?

e goal: notrusted setup and fast group operation

To learn more: see survey at https://eprint.iacr.org/2018/712

THE END

