NutMiC'19, June, 2019

Verifiable Delay Functions: How to Slow Things Down (Verifiably)

Dan Boneh
Stanford University

What is a VDF?

(verifiable delay function)

- Intuition: a function $X \rightarrow Y$ that
 - (1) takes time T to evaluate, even with polynomial parallelism,
 - (2) the output can be verified efficiently

- Setup $(\lambda, T) \rightarrow$ public parameters pp
- Eval $(pp, \mathbf{x}) \rightarrow \text{output } \mathbf{y}, \text{ proof } \boldsymbol{\pi}$ (parallel time \mathbf{T})
- Verify $(pp, \mathbf{x}, \mathbf{y}, \mathbf{\pi}) \rightarrow \{ yes, no \}$ (time poly $(\lambda, \log T)$)

- Setup $(\lambda, T) \longrightarrow$ public parameters pp
- Eval $(pp, \mathbf{x}) \rightarrow \text{output } \mathbf{y}, \text{ proof } \boldsymbol{\pi}$ (parallel time T)
- Verify $(pp, \mathbf{x}, \mathbf{y}, \mathbf{\pi}) \rightarrow \{ yes, no \}$ (time poly $(\lambda, \log T)$)

```
"Uniqueness": if Verify(pp, x, y, \pi) = Verify(pp, x, y', \pi') = yes
then y = y'
```

" $\underline{\varepsilon}$ -Sequentiality": for all parallel algs. A, time(A) < (1- ε)·time(Eval), for random $x \in X$, A cannot distinguish Eval(pp, x) from a random $y \in Y$

Application: lotteries

Problem: generating <u>verifiable</u> randomness in the real world?

Standard solutions are unsatisfactory

Broken method: distributed generation

Problem: Zoe controls value of *rand*!!

[LW'15

Solution: slow things down with a VDF

- Submissions: start at 12:00pm, end at 12:10pm
- VDF delay: about one hour (≫ 10 minutes)

Sequentiality: ensures Zoe cannot bias output

Uniqueness: ensures no ambiguity about output

Being implemented and deployed ...

Construction 1: from hash functions

Hash function H: $\{0,1\}^{256} \longrightarrow \{0,1\}^{256}$ (e.g. SHA256)

pp = (public parameters for a SNARK)

```
H^{(T)}(x) = H(H(H(H(H(H(L(X))) ...))))

T times (sequential work)
```

- Eval(pp, x): output $y = H^{(T)}(x)$, proof $\pi = (SNARK)$
- Verify(pp, x, y, π): accept if SNARK proof is valid

Construction 1: from hash functions

Problem: computing SNARK proof π takes longer than computing $y = H^{(T)}(x)$

 \Rightarrow adversary can compute **y** long before Eval(**pp**, **x**) finishes

Simple solution using log₂(T)-way parallelism [B-Bonneau-Bünz-Fisch'18]

Construction 2: exponentiation

Why?

G: finite abelian group

• Assumption 1: the order of G cannot be efficiently computed

$$pp = (G, H: X \longrightarrow G)$$

T squarings, e.g. $T = 10^9$

• Eval(pp, x): output $y = H(x)^{(2^T)}$ $\in G$

need proof $\pi = (proof of correct exponentiation)$

Proof of correct exponentiation (T=power of 2)

Set $g_1 = g^r u$, $h_1 = u^r h$. Recursively prove $h_1 = g_1^{(2^{T/2})}$

Proof of correct exponentiation [P'18]

Proof of correct exponentiation [P'18]

As a non-interactive proof:

• Proof $\pi = (u, u_1, ..., u_{\log T})$ via the Fiat-Shamir heuristic

$$r_i = hash(g, h, u, r, ..., u_{i-1}, r_{i-1}, u_i), i = 1, ..., log T$$

Computing the proof π : fast, only $O(\sqrt{T})$ steps

• By storing \sqrt{T} values while computing $g^{(2^T)}$

Soundness

Theorem [BBF'18] (informal): suppose $h \neq g^{(2^I)}$, but prover P convinces verifier (with non-negligible probability ϵ).

Then there is an algorithm, whose run time is twice that of P, that outputs (with prob. ϵ^2)

$$(w,d)$$
 where $1 \neq w \in G$ and $d < 2^{128}$ such that $w^d = 1$

assumption 2

so: hard to find $1 \neq w \in G$ of known order \Rightarrow protocol is secure

Assumption 2 is necessary for security

Suppose some (w, d) is known where $1 \neq w \in G$ and $w^d = 1$.

 \Rightarrow Prover can cheat with probability 1/d

How? set
$$h = \mathbf{w} \cdot g^{(2^T)} \neq g^{(2^T)}$$
, $u = \mathbf{w} \cdot g^{(2^{T/2})}$

Now, verifier falsely accepts whenever $r+1\equiv 2^{T/2}\pmod{d}$ why? in this case: $h_1=g_1^{(2^{T/2})}$ holds with prob. 1/d u^rh $(g^rh)^{(2^{T/2})}$

More generally ... nothing special about squaring

G: finite abelian group. $\phi: G \to G$ an endomorphism

$$oldsymbol{g}$$
 , $oldsymbol{h} \in oldsymbol{G}$, claim: $oldsymbol{h} = oldsymbol{\phi}^{(\mathsf{T})}(\mathsf{g})$

Prover
$$(g, h)$$

$$u = \phi^{(T/2)}(g)$$

$$g_1 = g^r u , h_1 = u^r h$$
claim: $h_1 = \phi^{(T/2)}(g_1)$

$$Proof \pi = (u, u_1, \dots, u_n)$$

Proof $\pi = (u, u_1, \dots, u_{\log T})$

Proof of correct exponentiation: method 2

Proof $\pi = (u)$

single element!

Soundness

Need assumption 2: hard to find $1 \neq w \in G$ of known order ... but is not sufficient

Security relies on a stronger assumption called the *adaptive root assumption*.

Candidate abelian groups

Goal: group G with no elements ≠1 of known order

- $\mathbf{n} \in \mathbb{Z}$, unknown factorization. $G_n = (\mathbb{Z}/n)^*/\{\pm 1\}$ Con: trusted setup to generate n (or a large random n)
- $p \equiv 3 \pmod{4}$ prime. $G_p = \text{class group of } \mathbb{Q}(\sqrt{-p})$.

Con: no setup, but complex operation (slow verify)

Pro: can switch group every few minutes \Rightarrow smaller params

Candidate abelian groups

Goal: group G

Note DJB parallelism for exponentiation in G_n

- $\mathbf{n} \in \mathbb{Z}$, unknown factorization. $G_n = (\mathbb{Z}/n)^*/\{\pm 1\}$ Con: trusted setup to generate n (or a large random n)
- $p \equiv 3 \pmod{4}$ prime. $G_p = \text{class group of } \mathbb{Q}(\sqrt{-p})$.

Con: no setup, but complex operation (slow verify)

Pro: can switch group every few minutes ⇒ smaller params

Assumption 2 in class groups?

hard to find $1 \neq w \in G_p$ of known small order

Cohen-Lenstra: frequency d divides $|G_p|$:

d=3: 44%, d = 5: 24%, d = 7: 16%

Open: When 3 divides $|G_p|$,

can we efficiently find an element of order 3 in G_p ?

The Chia class group challenge

Recent class number record: 512-bit discriminant

Beullens, Kleinjung, Vercauteren 2019:

The Chia challenge: computing larger class numbers

Are there interesting discriminants to include in challenge?

https://github.com/Chia-Network/vdf-competition

VDF construction 3: isogenies

[De Feo, Masson, Petit, Sanso' 19]

Degree-2 supersingular isogeny classes over \mathbb{F}_p : (p \equiv 7 mod 8)

(curves and isogenies defined over \mathbb{F}_p)

VDF construction 3: isogenies

[De Feo, Masson, Petit, Sanso' 19]

Degree-2 supersingular isogeny classes over \mathbb{F}_p : $(p \equiv 7 \mod 8)$

 $\phi: E \to E'$, $\widehat{\phi}: E' \to E$, $\deg(\phi) = 2^T$

Tools

$$|E(\mathbb{F}_{p})| = |E'(\mathbb{F}_{p})| = p + 1.$$

$$E \xrightarrow{\phi \atop \widehat{\phi}} E'$$

Let $\ell \mid p+1$ be a large prime factor of p+1

Fact: For all
$$P \in E[\ell] \cap E(\mathbb{F}_p)$$
 and $P' \in E'[\ell] \cap E'(\mathbb{F}_p)$

$$\hat{\boldsymbol{e}}_{\ell}(\boldsymbol{P}, \ \widehat{\boldsymbol{\phi}}(\boldsymbol{P}')) = \hat{\boldsymbol{e}}'_{\ell}(\boldsymbol{\phi}(\boldsymbol{P}), \ \boldsymbol{P}')$$

non-degenerate pairing on E

non-degenerate pairing on E'

The VDF (over \mathbb{F}_p)

Setup: (1) choose
$$P \in E[\ell] \cap E(\mathbb{F}_p)$$
, compute $P' = \phi(P)$
(2) $H: X \to E'[\ell] \cap E'(\mathbb{F}_p)$

$$pp = (E, E', H, \phi, P, P')$$

No proof π !!

Eval
$$(pp, x) = \hat{\phi}(H(x))$$
 (T steps)

Verify
$$(pp, x, y)$$
: accept if $\hat{e}_{\ell}(P, y) = \hat{e}'_{\ell}(P', H(x))$ and $y \in E[\ell] \cap E(\mathbb{F}_p)$.

Does Eval take T steps?

Can an attacker find a low degree isogeny $\psi: E' \to E$??

Answer: yes, if $End_{\mathbb{F}_p}(E)$ is known [Kohel, Lauter, Petit, Tignol, 2014]

Solution: use a trusted setup to generate a supersingular $E/\mathbb{F}_{\mathbf{p}}$ s.t. $End_{\bar{\mathbb{F}}_p}(E)$ is unknown

Summary and open problems

VDFs are an important new primitive

• Several elegant constructions, but looking for more.

Problem 1: is there a simple fully <u>post-quantum</u> VDF?

Problem 2: other groups of unknown order?

• goal: no trusted setup and fast group operation

To learn more: see survey at https://eprint.iacr.org/2018/712

THE END