Hash functions from superspecial genus-2 curves using Richelot isogenies

Wouter Castryck, Thomas Decru, and Benjamin Smith

NutMiC 2019, Paris
June 24, 2019

Background

- 2006: hash functions based on supersingular elliptic curves (Charles, Goren, Lauter)
- 2011: key exchange protocol based on supersingular elliptic curves called SIDH (Jao, De Feo)

Background

- 2006: hash functions based on supersingular elliptic curves (Charles, Goren, Lauter)
- 2011: key exchange protocol based on supersingular elliptic curves called SIDH (Jao, De Feo)
- 2018: hash function based on supersingular genus-2 curves (Takashima)
- 2019: collisions in genus-2 hash, create genus-2 SIDH (Flynn, Ti)
- 2019: we fix collisions and smooth out a bunch of technicalities

Hash functions from expander graph

Input: 110

Hash functions from expander graph

Input: 110; Output: H

Supersingular ℓ-isogeny graph over $\mathbb{F}_{p^{2}}$

Construct the graph $G(p, \ell)$ as follows:

- Vertices: all supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ up to \cong
- Edges: all ℓ-isogenies between them

Supersingular ℓ-isogeny graph over $\mathbb{F}_{p^{2}}$

Construct the graph $G(p, \ell)$ as follows:

- Vertices: all supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ up to \cong
- Edges: all ℓ-isogenies between them

Some properties:

- Amount of vertices $\sim p / 12$
- Good expander graph
- Every node has $\ell+1$ edges

$G(277,2)$ with $\mathbb{F}_{277^{2}} \cong \mathbb{F}_{277}(a) \cong \mathbb{F}_{277}[x] /\left(x^{2}+274 x+5\right)$

Security

Problem

Given two supersingular elliptic curves E and E^{\prime} defined over $\mathbb{F}_{p^{2}}$, find an ℓ^{k}-isogeny between them.

Security

Problem

Given two supersingular elliptic curves E and E^{\prime} defined over $\mathbb{F}_{p^{2}}$, find an ℓ^{k}-isogeny between them.

Problem

Given any supersingular elliptic curve E defined over $\mathbb{F}_{p^{2}}$, find a curve E^{\prime} and two distinct isogenies of degree ℓ^{k} and $\ell^{k^{\prime}}$ between them.

General idea

2-isogenies between supersingular elliptic curves
(2,2)-isogenies between principally polarized superspecial abelian surfaces

Elliptic curves

Definition

An elliptic curve, say E, over a field K of odd characteristic, is an algebraic curve defined by an equation of the form

$$
E: y^{2}=f(x)
$$

where $f(x)$ is a squarefree polynomial in $K[x]$ of degree 3 or 4 .

Genus two curves

Definition

A hyperelliptic curve of genus two, say C, over a field K of odd characteristic, is an algebraic curve defined by an equation of the form

$$
C: y^{2}=f(x)
$$

where $f(x)$ is a squarefree polynomial in $K[x]$ of degree 5 or 6 .

Elliptic curves group law

Genus two curves group law

Abelian surfaces

Definition

An abelian surface is a two-dimensional projective algebraic variety that is also an algebraic group.

Always isomorphic to one of the following:

- jacobian of a (hyperelliptic) genus-2 curve
- product of two elliptic curves

Principal polarization

Definition

A principal polarization is an isomorphism λ from an abelian variety A to its dual, which is of the form

$$
\begin{aligned}
\lambda_{\mathcal{L}}: A(\bar{k}) & \rightarrow \operatorname{Pic}(A) \\
a & \mapsto t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1},
\end{aligned}
$$

for some ample sheaf \mathcal{L} on $A(\bar{k})$.

Principal polarization

Definition

A principal polarization is an isomorphism λ from an abelian variety A to its dual, which is of the form

$$
\begin{aligned}
\lambda_{E}: A(\bar{k}) & \rightarrow \operatorname{Pic}(A) \\
\nexists & \ngtr t_{a}^{*} \mathcal{L} \otimes \mathcal{L}^{-1},
\end{aligned}
$$

for some ample sheaf \mathcal{L} on $\Lambda(\bar{k})$.

Read: we have equations!

- $y^{2}=a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$
- $\left(y^{2}=x^{3}+b_{1} x+b_{0}\right) \times\left(y^{2}=x^{3}+c_{1} x+c_{0}\right)$

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,
- or $\operatorname{End}(E)$ is an order in a quaternion algebra,

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,
- or $\operatorname{End}(E)$ is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,
- or $\operatorname{End}(E)$ is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope $1 / 2$,

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,
- or $\operatorname{End}(E)$ is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope $1 / 2$,
- or the dual of Frobenius is purely inseparable,

Supersingular elliptic curves

E is supersingular iff

- the p-torsion of E is trivial,
- or $\operatorname{End}(E)$ is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope $1 / 2$,
- or the dual of Frobenius is purely inseparable,
- or the Hasse invariant is 0 ,
- ...

Superspecial genus two curves

Definition

A p.p. abelian surface defined over a field with characteristic p is superspecial if the Hasse invariant is zero.

Why?

- Finite amount $\sim p^{3} / 2880$
- All defined over $\mathbb{F}_{p^{2}}$

Superspecial abelian surfaces over $\mathbb{F}_{13^{2}}$

J

Superspecial abelian surfaces over $\mathbb{F}_{13^{2}}$

J

Superspecial abelian surfaces over $\mathbb{F}_{13^{2}}$

$$
(7,2,2)
$$

(2, 2)-isogenies

Definition

A $(2,2)$-isogeny ϕ is an isogeny such that $\operatorname{ker} \phi \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $\operatorname{ker} \phi$ is maximal isotropic with regards to the 2 -Weil pairing.

Remark: there are 15 of these (2,2)-isogenies for every A, and at least 9 are to the same type of abelian surface, so

$$
J_{C} \rightarrow J_{C^{\prime}} \text { or } E_{1} \times E_{2} \rightarrow E_{1}^{\prime} \times E_{2}^{\prime}
$$

Superspecial p.p. abelian surface $(2,2)$-isogeny graph over $\mathbb{F}_{13^{2}}$

Superspecial p.p. abelian surface $(2,2)$-isogeny graph over $\mathbb{F}_{p^{2}}$

Isogeny graph \mathcal{G}_{p} :

- Vertices: all p.p. superspecial abelian surfaces over $\mathbb{F}_{p^{2}}$ up to isomorphism
- genus-2 curves: absolute Igusa invariants $\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{F}_{p^{2}}^{3}$
- products of elliptic curves: j-invariants $\left\{j_{1}, j_{2}\right\} \subset \mathbb{F}_{p^{2}}$
- Edges: all $(2,2)$-isogenies between them

Superspecial p.p. abelian surface $(2,2)$-isogeny graph over $\mathbb{F}_{p^{2}}$

Isogeny graph \mathcal{G}_{p} :

- Vertices: all p.p. superspecial abelian surfaces over $\mathbb{F}_{p^{2}}$ up to isomorphism
- genus-2 curves: absolute Igusa invariants $\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{F}_{p^{2}}^{3}$
- products of elliptic curves: j-invariants $\left\{j_{1}, j_{2}\right\} \subset \mathbb{F}_{p^{2}}$
- Edges: all $(2,2)$-isogenies between them

Intuitively:

- Interior of $\mathcal{G}_{p}: \sim p^{3} / 2880$ genus- 2 curves
- Boundary of $\mathcal{G}_{p}: \sim p^{2} / 288$ products of elliptic curves

Restrict to jacobians of genus-2 curves

Ignore products of elliptic curves:

- $\mathcal{O}(1 / p)$ chance of encountering
- formulas are less efficient
- what would output be? $\left\{j_{1}, j_{2}\right\}$ vs $\left(j_{1}, j_{2}, j_{3}\right)$

Richelot isogenies

$$
C_{0}: y^{2}=\underbrace{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)}_{G_{1}} \underbrace{\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)}_{G_{2}} \underbrace{\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)}_{G_{3}}
$$

Richelot isogenies

$$
C_{0}: y^{2}=\underbrace{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)}_{G_{1}} \underbrace{\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)}_{G_{2}} \underbrace{\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)}_{G_{3}}
$$

Take $\phi_{1}: J_{C_{0}} \rightarrow J_{C_{1}}$ the (2, 2)-isogeny with kernel

$$
\left\{0,\left[\left(\alpha_{1}, 0\right)-\left(\alpha_{2}, 0\right)\right],\left[\left(\alpha_{3}, 0\right)-\left(\alpha_{4}, 0\right)\right],\left[\left(\alpha_{5}, 0\right)-\left(\alpha_{6}, 0\right)\right]\right\}
$$

Richelot isogenies

$$
C_{0}: y^{2}=\underbrace{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)}_{G_{1}} \underbrace{\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)}_{G_{2}} \underbrace{\left(x-\alpha_{5}\right)\left(x-\alpha_{6}\right)}_{G_{3}}
$$

Take $\phi_{1}: J_{C_{0}} \rightarrow J_{C_{1}}$ the (2, 2)-isogeny with kernel

$$
\begin{aligned}
& \left\{0,\left[\left(\alpha_{1}, 0\right)-\left(\alpha_{2}, 0\right)\right],\left[\left(\alpha_{3}, 0\right)-\left(\alpha_{4}, 0\right)\right],\left[\left(\alpha_{5}, 0\right)-\left(\alpha_{6}, 0\right)\right]\right\} \\
\rightsquigarrow & C_{1}: y^{2}=\delta^{-1} \underbrace{\left(G_{2}^{\prime} G_{3}-G_{2} G_{3}^{\prime}\right.}_{H_{1}} \underbrace{\left(G_{3}^{\prime} G_{1}-G_{3} G_{1}^{\prime}\right)}_{H_{2}} \underbrace{\left(G_{1}^{\prime} G_{2}-G_{1} G_{2}^{\prime}\right)}_{H_{3}}
\end{aligned}
$$

Avoiding dual isogeny

Continuing with $y^{2}=H_{1} H_{2} H_{3}$ gives the dual isogeny $\hat{\phi}_{1}$ and the composition is a ($2,2,2,2$)-isogeny:

Avoiding small cycles

Continuing with one factor fixed, e.g. $y^{2}=H_{1} \tilde{H}_{2} \tilde{H}_{3}$, gives a $(2,2)$-isogeny ϕ_{2}, with a composed ($4,2,2$)-isogeny:

$$
A_{0} \xrightarrow{\phi_{1}} A_{1} \xrightarrow{\phi_{2}} A_{2}
$$

Avoiding small cycles

Continuing with one factor fixed, e.g. $y^{2}=H_{1} \tilde{H}_{2} \tilde{H}_{3}$, gives a $(2,2)$-isogeny ϕ_{2}, with a composed (4,2,2)-isogeny:

Good isogeny extensions

Write $H_{1}=L_{1} L_{2}, H_{2}=L_{3} L_{4}, H_{3}=L_{5} L_{6}$ then the good extensions of ϕ_{1} are determined by the quadratic factors

$$
\begin{array}{ll}
\left(L_{1} L_{3}, L_{2} L_{5}, L_{4} L_{6}\right), & \left(L_{1} L_{3}, L_{2} L_{6}, L_{4} L_{5}\right), \\
\left(L_{1} L_{4}, L_{2} L_{5}, L_{3} L_{6}\right), & \left(L_{1} L_{4}, L_{2} L_{6}, L_{3} L_{5}\right), \\
\left(L_{1} L_{5}, L_{2} L_{3}, L_{4} L_{6}\right), & \left(L_{1} L_{5}, L_{2} L_{4}, L_{3} L_{6}\right), \\
\left(L_{1} L_{6}, L_{2} L_{3}, L_{4} L_{5}\right), & \left(L_{1} L_{6}, L_{2} L_{4}, L_{3} L_{5}\right) .
\end{array}
$$

Composing gives a (4, 4)-isogeny.

Security

Problem

Given two superspecial genus-2 curves C_{1} and C_{2} defined over $\mathbb{F}_{p^{2}}$, find $a\left(2^{k}, 2^{k}\right)$-isogeny between their jacobians.

Security

Problem

Given two superspecial genus-2 curves C_{1} and C_{2} defined over $\mathbb{F}_{p^{2}}$, find $a\left(2^{k}, 2^{k}\right)$-isogeny between their jacobians.

Problem

Given any superspecial genus-2 curve C_{1} defined over $\mathbb{F}_{p^{2}}$, find
(1) a curve C_{2} and a $\left(2^{k}, 2^{k}\right)$-isogeny $J_{C_{1}} \rightarrow J_{C_{2}}$,
(2) a curve C_{2}^{\prime} and a $\left(2^{k^{\prime}}, 2^{k^{\prime}}\right)$-isogeny $J_{C_{1}} \rightarrow J_{C_{2}^{\prime}}$,
such that C_{2} and C_{2}^{\prime} are $\overline{\mathbb{F}}_{p}$-isomorphic.

Concluding remarks

Advantages:

- Processing 3 bits at once, with possible parallelization of 3 square root extractions
- Elliptic curves graph size $\mathcal{O}(p)$

Genus-2 curves graph size $\mathcal{O}\left(p^{3}\right)$
\Rightarrow same security in smaller fields, e.g. $p \approx 2^{86}$ vs $p \approx 2^{256}$

Concluding remarks

Advantages:

- Processing 3 bits at once, with possible parallelization of 3 square root extractions
- Elliptic curves graph size $\mathcal{O}(p)$ Genus-2 curves graph size $\mathcal{O}\left(p^{3}\right)$
\Rightarrow same security in smaller fields, e.g. $p \approx 2^{86}$ vs $p \approx 2^{256}$
Future research:
- Practical genus-2 SIDH key exchange?
- Expander properties of \mathcal{G}_{p} ?

