Hash functions from superspecial genus-2 curves using Richelot isogenies

Wouter Castryck, Thomas Decru, and Benjamin Smith

NutMiC 2019, Paris

June 24, 2019

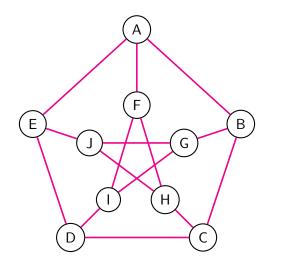
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

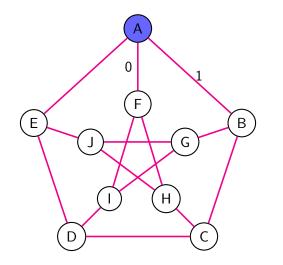
- 2006: hash functions based on supersingular elliptic curves (Charles, Goren, Lauter)
- 2011: key exchange protocol based on supersingular elliptic curves called SIDH (Jao, De Feo)

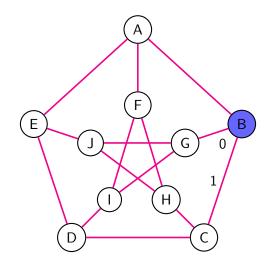
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

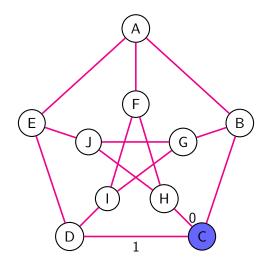
- 2006: hash functions based on supersingular elliptic curves (Charles, Goren, Lauter)
- 2011: key exchange protocol based on supersingular elliptic curves called SIDH (Jao, De Feo)
- 2018: hash function based on supersingular genus-2 curves (Takashima)
- 2019: collisions in genus-2 hash, create genus-2 SIDH (Flynn, Ti)

• 2019: we fix collisions and smooth out a bunch of technicalities

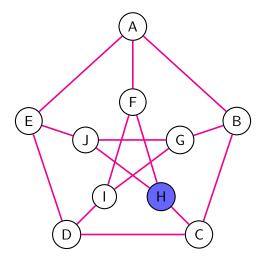








Input: 110; Output: H



Construct the graph $G(p, \ell)$ as follows:

 \bullet Vertices: all supersingular elliptic curves over \mathbb{F}_{p^2} up to \cong

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\bullet\,$ Edges: all $\ell\text{-isogenies}$ between them

Construct the graph $G(p, \ell)$ as follows:

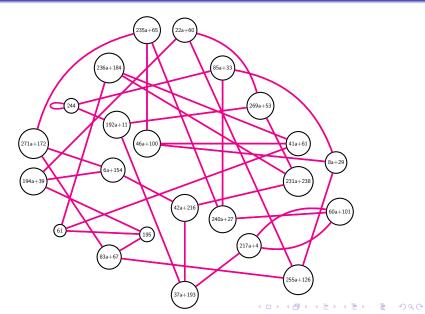
 \bullet Vertices: all supersingular elliptic curves over \mathbb{F}_{p^2} up to \cong

• Edges: all ℓ -isogenies between them

Some properties:

- Amount of vertices $\sim p/12$
- Good expander graph
- Every node has $\ell + 1$ edges

G(277,2) with $\mathbb{F}_{277^2} \cong \mathbb{F}_{277}(a) \cong \mathbb{F}_{277}[x]/(x^2 + 274x + 5)$



Problem

Given two supersingular elliptic curves E and E' defined over \mathbb{F}_{p^2} , find an ℓ^k -isogeny between them.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Problem

Given two supersingular elliptic curves E and E' defined over \mathbb{F}_{p^2} , find an ℓ^k -isogeny between them.

Problem

Given any supersingular elliptic curve E defined over \mathbb{F}_{p^2} , find a curve E' and two distinct isogenies of degree ℓ^k and $\ell^{k'}$ between them.

- 日本 本語 本 本 田 本 王 本 田 本

2-isogenies between supersingular elliptic curves

\downarrow

(2,2)-isogenies between principally polarized superspecial abelian surfaces

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An elliptic curve, say E, over a field K of odd characteristic, is an algebraic curve defined by an equation of the form

$$E: y^2 = f(x),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where f(x) is a squarefree polynomial in K[x] of degree 3 or 4.

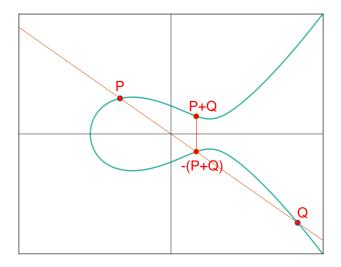
A hyperelliptic curve of genus two, say C, over a field K of odd characteristic, is an algebraic curve defined by an equation of the form

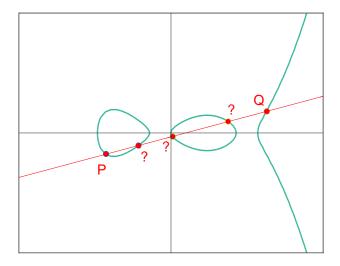
$$C: y^2 = f(x),$$

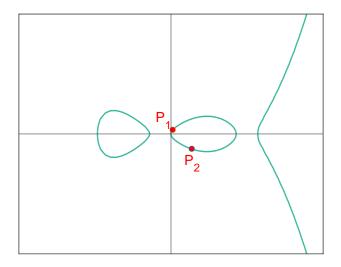
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

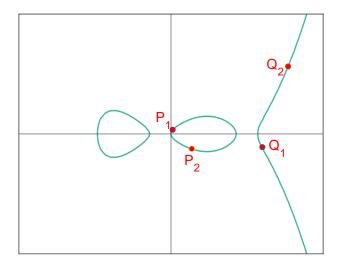
where f(x) is a squarefree polynomial in K[x] of degree 5 or 6.

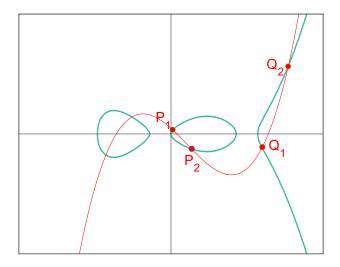
Elliptic curves group law

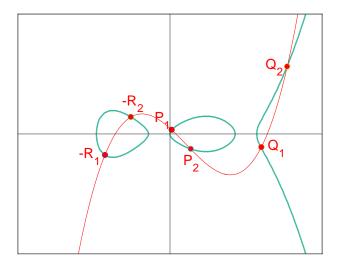


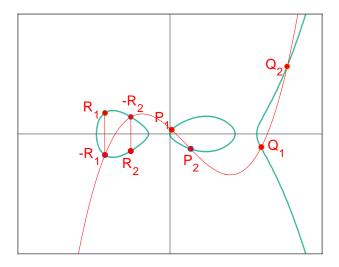












An **abelian surface** is a two-dimensional projective algebraic variety that is also an algebraic group.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Always isomorphic to one of the following:

- jacobian of a (hyperelliptic) genus-2 curve
- product of two elliptic curves

A **principal polarization** is an isomorphism λ from an abelian variety A to its dual, which is of the form

$$egin{array}{rcl} \lambda_{\mathcal{L}} : \mathcal{A}(ar{k}) &
ightarrow & \operatorname{Pic}(\mathcal{A}) \ & a & \mapsto & t_a^* \mathcal{L} \otimes \mathcal{L}^{-1}. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some ample sheaf \mathcal{L} on $A(\bar{k})$.

A **principal polarization** is an isomorphism λ from an abelian variety A to its dual, which is of the form

$$\begin{array}{rcl} \underline{\lambda}_{\mathcal{L}} & \stackrel{*}{\to} & \underline{Pie}(\mathcal{A}) \\ & \stackrel{*}{\to} & \underline{t}_{*}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}, \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

for some ample sheaf \mathcal{L} on $A(\bar{k})$.

Read: we have equations!

•
$$y^2 = a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

• $(y^2 = x^3 + b_1 x + b_0) \times (y^2 = x^3 + c_1 x + c_0)$

E is supersingular iff

• the *p*-torsion of *E* is trivial,

E is supersingular iff

- the *p*-torsion of *E* is trivial,
- or End(E) is an order in a quaternion algebra,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

E is supersingular iff

- the *p*-torsion of *E* is trivial,
- or End(E) is an order in a quaternion algebra,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• or the trace of Frobenius is divisible by p,

E is supersingular iff

- the *p*-torsion of *E* is trivial,
- or End(E) is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope 1/2,

E is supersingular iff

- the *p*-torsion of *E* is trivial,
- or End(E) is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope 1/2,

• or the dual of Frobenius is purely inseparable,

E is supersingular iff

- the *p*-torsion of *E* is trivial,
- or End(E) is an order in a quaternion algebra,
- or the trace of Frobenius is divisible by p,
- or the Newton polygon is a straight line segment with slope 1/2,

- or the dual of Frobenius is purely inseparable,
- or the Hasse invariant is 0,

• . . .

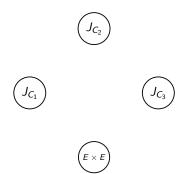
A p.p. abelian surface defined over a field with characteristic p is **superspecial** if the Hasse invariant is zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why?

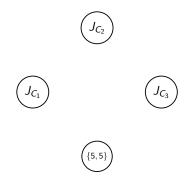
- Finite amount $\sim p^3/2880$
- All defined over \mathbb{F}_{p^2}

Superspecial abelian surfaces over \mathbb{F}_{13^2}



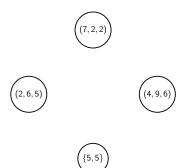
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Superspecial abelian surfaces over \mathbb{F}_{13^2}



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Superspecial abelian surfaces over \mathbb{F}_{13^2}



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Definition

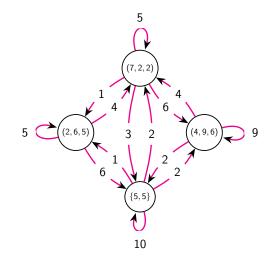
A (2,2)-isogeny ϕ is an isogeny such that ker $\phi \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and ker ϕ is maximal isotropic with regards to the 2-Weil pairing.

Remark: there are 15 of these (2, 2)-isogenies for every A, and at least 9 are to the same type of abelian surface, so

$$J_C
ightarrow J_{C'}$$
 or $E_1 imes E_2
ightarrow E_1' imes E_2'$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Superspecial p.p. abelian surface (2, 2)-isogeny graph over \mathbb{F}_{13^2}



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Superspecial p.p. abelian surface (2, 2)-isogeny graph over \mathbb{F}_{p^2}

Isogeny graph \mathcal{G}_p :

- \bullet Vertices: all p.p. superspecial abelian surfaces over \mathbb{F}_{p^2} up to isomorphism
 - genus-2 curves: absolute Igusa invariants $(j_1, j_2, j_3) \in \mathbb{F}^3_{p^2}$

- products of elliptic curves: *j*-invariants $\{j_1, j_2\} \subset \mathbb{F}_{p^2}$
- Edges: all (2,2)-isogenies between them

Superspecial p.p. abelian surface (2, 2)-isogeny graph over \mathbb{F}_{p^2}

Isogeny graph \mathcal{G}_p :

 \bullet Vertices: all p.p. superspecial abelian surfaces over \mathbb{F}_{p^2} up to isomorphism

- genus-2 curves: absolute Igusa invariants $(j_1, j_2, j_3) \in \mathbb{F}^3_{p^2}$
- products of elliptic curves: j-invariants $\{j_1, j_2\} \subset \mathbb{F}_{p^2}$
- Edges: all (2,2)-isogenies between them

Intuitively:

- Interior of \mathcal{G}_{p} : $\sim p^{3}/2880$ genus-2 curves
- Boundary of \mathcal{G}_p : $\sim p^2/288$ products of elliptic curves

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ignore products of elliptic curves:

- $\mathcal{O}(1/p)$ chance of encountering
- formulas are less efficient
- what would output be? $\{j_1, j_2\}$ vs (j_1, j_2, j_3)

Richelot isogenies

$$C_0: y^2 = \underbrace{(x - \alpha_1)(x - \alpha_2)}_{G_1} \underbrace{(x - \alpha_3)(x - \alpha_4)}_{G_2} \underbrace{(x - \alpha_5)(x - \alpha_6)}_{G_3}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

$$C_0: y^2 = \underbrace{(x - \alpha_1)(x - \alpha_2)}_{G_1} \underbrace{(x - \alpha_3)(x - \alpha_4)}_{G_2} \underbrace{(x - \alpha_5)(x - \alpha_6)}_{G_3}$$

・ロト・日本・モト・モー ショー ショー

Take $\phi_1 : J_{C_0} \to J_{C_1}$ the (2,2)-isogeny with kernel {0, [(α_1 , 0) - (α_2 , 0)], [(α_3 , 0) - (α_4 , 0)], [(α_5 , 0) - (α_6 , 0)]}

$$C_{0}: y^{2} = \underbrace{(x - \alpha_{1})(x - \alpha_{2})}_{G_{1}} \underbrace{(x - \alpha_{3})(x - \alpha_{4})}_{G_{2}} \underbrace{(x - \alpha_{5})(x - \alpha_{6})}_{G_{3}}$$

Take $\phi_{1}: J_{C_{0}} \to J_{C_{1}}$ the (2, 2)-isogeny with kernel
 $\{0, [(\alpha_{1}, 0) - (\alpha_{2}, 0)], [(\alpha_{3}, 0) - (\alpha_{4}, 0)], [(\alpha_{5}, 0) - (\alpha_{6}, 0)]\}$

$$\rightsquigarrow C_1: y^2 = \delta^{-1} \underbrace{(G'_2 G_3 - G_2 G'_3)}_{H_1} \underbrace{(G'_3 G_1 - G_3 G'_1)}_{H_2} \underbrace{(G'_1 G_2 - G_1 G'_2)}_{H_3}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ● ● ●

Continuing with $y^2 = H_1H_2H_3$ gives the dual isogeny $\hat{\phi}_1$ and the composition is a (2,2,2,2)-isogeny:

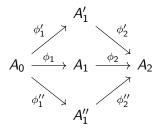
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Continuing with one factor fixed, e.g. $y^2 = H_1 \tilde{H}_2 \tilde{H}_3$, gives a (2,2)-isogeny ϕ_2 , with a composed (4,2,2)-isogeny:

$$A_0 \stackrel{\phi_1}{\longrightarrow} A_1 \stackrel{\phi_2}{\longrightarrow} A_2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Continuing with one factor fixed, e.g. $y^2 = H_1 \tilde{H}_2 \tilde{H}_3$, gives a (2,2)-isogeny ϕ_2 , with a composed (4,2,2)-isogeny:



<ロト < 同ト < 回ト < 三ト < 三ト 三三

Write $H_1 = L_1L_2$, $H_2 = L_3L_4$, $H_3 = L_5L_6$ then the good extensions of ϕ_1 are determined by the quadratic factors

$$\begin{array}{ll} (L_1L_3, L_2L_5, L_4L_6), & (L_1L_3, L_2L_6, L_4L_5), \\ (L_1L_4, L_2L_5, L_3L_6), & (L_1L_4, L_2L_6, L_3L_5), \\ (L_1L_5, L_2L_3, L_4L_6), & (L_1L_5, L_2L_4, L_3L_6), \\ (L_1L_6, L_2L_3, L_4L_5), & (L_1L_6, L_2L_4, L_3L_5). \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Composing gives a (4, 4)-isogeny.

Problem

Given two superspecial genus-2 curves C_1 and C_2 defined over \mathbb{F}_{p^2} , find a $(2^k, 2^k)$ -isogeny between their jacobians.

・ロト ・回ト ・ヨト ・ヨト ・ ヨー うへぐ

Problem

Given two superspecial genus-2 curves C_1 and C_2 defined over \mathbb{F}_{p^2} , find a $(2^k, 2^k)$ -isogeny between their jacobians.

Problem

Given any superspecial genus-2 curve C_1 defined over \mathbb{F}_{p^2} , find

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

$$f 0$$
 a curve C_2 and a $(2^k,2^k)$ -isogeny $J_{C_1} o J_{C_2}$,

② a curve
$$C_2'$$
 and a $(2^{k'},2^{k'})$ -isogeny $J_{\mathcal{C}_1} o J_{\mathcal{C}_2'}$,

such that C_2 and C'_2 are $\overline{\mathbb{F}}_p$ -isomorphic.

Advantages:

- Processing 3 bits at once, with possible parallelization of 3 square root extractions
- Elliptic curves graph size O(p)
 Genus-2 curves graph size O(p³)

 \Rightarrow same security in smaller fields, e.g. $p\approx 2^{86}$ vs $p\approx 2^{256}$

Advantages:

- Processing 3 bits at once, with possible parallelization of 3 square root extractions
- Elliptic curves graph size O(p)
 Genus-2 curves graph size O(p³)

 \Rightarrow same security in smaller fields, e.g. $p\approx 2^{86}$ vs $p\approx 2^{256}$ Future research:

- Practical genus-2 SIDH key exchange?
- Expander properties of \mathcal{G}_p ?