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Background

2006: hash functions based on supersingular elliptic curves
(Charles, Goren, Lauter)

2011: key exchange protocol based on supersingular elliptic
curves called SIDH (Jao, De Feo)

2018: hash function based on supersingular genus-2 curves
(Takashima)

2019: collisions in genus-2 hash, create genus-2 SIDH (Flynn,
Ti)

2019: we fix collisions and smooth out a bunch of
technicalities



Background

2006: hash functions based on supersingular elliptic curves
(Charles, Goren, Lauter)

2011: key exchange protocol based on supersingular elliptic
curves called SIDH (Jao, De Feo)

2018: hash function based on supersingular genus-2 curves
(Takashima)

2019: collisions in genus-2 hash, create genus-2 SIDH (Flynn,
Ti)

2019: we fix collisions and smooth out a bunch of
technicalities



Hash functions from expander graph

Input: 110

A

E B

D C

F

J G

I H



Hash functions from expander graph

Input: 110

A

E B

D C

F

J G

I H

1
0



Hash functions from expander graph

Input: 110

A

E B

D C

F

J G

I H

1

0



Hash functions from expander graph

Input: 110

A

E B

D C

F

J G

I H

1

0



Hash functions from expander graph

Input: 110; Output: H

A

E B

D C

F

J G

I H



Supersingular `-isogeny graph over Fp2

Construct the graph G (p, `) as follows:

Vertices: all supersingular elliptic curves over Fp2 up to ∼=
Edges: all `-isogenies between them

Some properties:

Amount of vertices ∼ p/12

Good expander graph

Every node has `+ 1 edges
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Security

Problem

Given two supersingular elliptic curves E and E ′ defined over Fp2 ,
find an `k -isogeny between them.

Problem

Given any supersingular elliptic curve E defined over Fp2 , find a

curve E ′ and two distinct isogenies of degree `k and `k
′

between
them.
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General idea

2-isogenies between supersingular elliptic curves

↓

(2,2)-isogenies between principally polarized superspecial abelian
surfaces



Elliptic curves

Definition

An elliptic curve, say E , over a field K of odd characteristic, is an
algebraic curve defined by an equation of the form

E : y2 = f (x),

where f (x) is a squarefree polynomial in K [x ] of degree 3 or 4.



Genus two curves

Definition

A hyperelliptic curve of genus two, say C , over a field K of odd
characteristic, is an algebraic curve defined by an equation of the
form

C : y2 = f (x),

where f (x) is a squarefree polynomial in K [x ] of degree 5 or 6.
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Abelian surfaces

Definition

An abelian surface is a two-dimensional projective algebraic
variety that is also an algebraic group.

Always isomorphic to one of the following:

jacobian of a (hyperelliptic) genus-2 curve

product of two elliptic curves



Principal polarization

Definition

A principal polarization is an isomorphism λ from an abelian
variety A to its dual, which is of the form

λL : A(k̄) → Pic(A)

a 7→ t∗aL ⊗ L−1,

for some ample sheaf L on A(k̄).



Principal polarization

Definition

A principal polarization is an isomorphism λ from an abelian
variety A to its dual, which is of the form

�����λL : A(k̄) ��→ ����Pic(A)

�a ��7→ ������
t∗aL ⊗ L−1,

for some ample sheaf L on A(k̄).

Read: we have equations!

y2 = a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x + a0

(y2 = x3 + b1x + b0)× (y2 = x3 + c1x + c0)



Supersingular elliptic curves

E is supersingular iff

the p-torsion of E is trivial,

or End(E ) is an order in a quaternion algebra,

or the trace of Frobenius is divisible by p,

or the Newton polygon is a straight line segment with slope
1/2,

or the dual of Frobenius is purely inseparable,

or the Hasse invariant is 0,

. . .
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Superspecial genus two curves

Definition

A p.p. abelian surface defined over a field with characteristic p is
superspecial if the Hasse invariant is zero.

Why?

Finite amount ∼ p3/2880

All defined over Fp2



Superspecial abelian surfaces over F132
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Superspecial abelian surfaces over F132

(2, 6, 5)

(7, 2, 2)

(4, 9, 6)

{5, 5}



(2, 2)-isogenies

Definition

A (2, 2)-isogeny φ is an isogeny such that ker φ ∼= Z/2Z⊕ Z/2Z
and ker φ is maximal isotropic with regards to the 2-Weil pairing.

Remark: there are 15 of these (2, 2)-isogenies for every A, and at
least 9 are to the same type of abelian surface, so

JC → JC ′ or E1 × E2 → E ′1 × E ′2



Superspecial p.p. abelian surface (2, 2)-isogeny graph over F132
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Superspecial p.p. abelian surface (2, 2)-isogeny graph over Fp2

Isogeny graph Gp:

Vertices: all p.p. superspecial abelian surfaces over Fp2 up to
isomorphism

genus-2 curves: absolute Igusa invariants (j1, j2, j3) ∈ F3
p2

products of elliptic curves: j-invariants {j1, j2} ⊂ Fp2

Edges: all (2, 2)-isogenies between them

Intuitively:

Interior of Gp: ∼ p3/2880 genus-2 curves

Boundary of Gp: ∼ p2/288 products of elliptic curves
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Restrict to jacobians of genus-2 curves

Ignore products of elliptic curves:

O(1/p) chance of encountering

formulas are less efficient

what would output be? {j1, j2} vs (j1, j2, j3)



Richelot isogenies

C0 : y2 = (x − α1)(x − α2)︸ ︷︷ ︸
G1

(x − α3)(x − α4)︸ ︷︷ ︸
G2

(x − α5)(x − α6)︸ ︷︷ ︸
G3

Take φ1 : JC0
→ JC1

the (2, 2)-isogeny with kernel

{0, [(α1, 0)− (α2, 0)], [(α3, 0)− (α4, 0)], [(α5, 0)− (α6, 0)]}

 C1 : y2 = δ−1 (G ′2G3 − G2G
′
3)︸ ︷︷ ︸

H1

(G ′3G1 − G3G
′
1)︸ ︷︷ ︸

H2

(G ′1G2 − G1G
′
2)︸ ︷︷ ︸

H3
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Avoiding dual isogeny

Continuing with y2 = H1H2H3 gives the dual isogeny φ̂1 and the
composition is a (2, 2, 2, 2)-isogeny:

A0 A1

φ1

φ̂1



Avoiding small cycles

Continuing with one factor fixed, e.g. y2 = H1H̃2H̃3, gives a
(2, 2)-isogeny φ2, with a composed (4, 2, 2)-isogeny:

A′1

A0 A1 A2

A′′1

φ1 φ2



Avoiding small cycles

Continuing with one factor fixed, e.g. y2 = H1H̃2H̃3, gives a
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Good isogeny extensions

Write H1 = L1L2, H2 = L3L4, H3 = L5L6 then the good extensions
of φ1 are determined by the quadratic factors

(L1L3, L2L5, L4L6), (L1L3, L2L6, L4L5),

(L1L4, L2L5, L3L6), (L1L4, L2L6, L3L5),

(L1L5, L2L3, L4L6), (L1L5, L2L4, L3L6),

(L1L6, L2L3, L4L5), (L1L6, L2L4, L3L5).

Composing gives a (4, 4)-isogeny.



Security

Problem

Given two superspecial genus-2 curves C1 and C2 defined over Fp2 ,

find a (2k , 2k)-isogeny between their jacobians.

Problem

Given any superspecial genus-2 curve C1 defined over Fp2 , find

1 a curve C2 and a (2k , 2k)-isogeny JC1
→ JC2

,

2 a curve C ′2 and a (2k
′
, 2k

′
)-isogeny JC1

→ JC ′
2
,

such that C2 and C ′2 are Fp-isomorphic.
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Concluding remarks

Advantages:

Processing 3 bits at once, with possible parallelization of 3
square root extractions

Elliptic curves graph size O(p)

Genus-2 curves graph size O(p3)

⇒ same security in smaller fields, e.g. p ≈ 286 vs p ≈ 2256

Future research:

Practical genus-2 SIDH key exchange?

Expander properties of Gp?
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