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@ 2011: key exchange protocol based on supersingular elliptic
curves called SIDH (Jao, De Feo)



Background

@ 2006: hash functions based on supersingular elliptic curves
(Charles, Goren, Lauter)

@ 2011: key exchange protocol based on supersingular elliptic
curves called SIDH (Jao, De Feo)

@ 2018: hash function based on supersingular genus-2 curves
(Takashima)

@ 2019: collisions in genus-2 hash, create genus-2 SIDH (Flynn,
Ti)

@ 2019: we fix collisions and smooth out a bunch of
technicalities
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Hash functions from expander graph

Input: 110; Output: H
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Construct the graph G(p, ¢) as follows:
e Vertices: all supersingular elliptic curves over F > up to =
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Supersingular (-isogeny graph over [F .

Construct the graph G(p, ¢) as follows:
e Vertices: all supersingular elliptic curves over F > up to =

@ Edges: all /-isogenies between them

Some properties:
@ Amount of vertices ~ p/12
@ Good expander graph
@ Every node has £+ 1 edges
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Security

Problem

Given two supersingular elliptic curves E and E' defined over I,
find an ¢¥-isogeny between them.




Security

Given two supersingular elliptic curves E and E' defined over I,
find an ¢¥-isogeny between them.

Problem

| 5\

Given any supersingular elliptic curve E defined over F 2, find a

curve E' and two distinct isogenies of degree (¥ and (X' between
them.




General idea

2-isogenies between supersingular elliptic curves

I

(2,2)-isogenies between principally polarized superspecial abelian
surfaces



Elliptic curves

Definition
An elliptic curve, say E, over a field K of odd characteristic, is an
algebraic curve defined by an equation of the form

E:y?=f(x),

where f(x) is a squarefree polynomial in K[x] of degree 3 or 4.




Genus two curves

Definition
A hyperelliptic curve of genus two, say C, over a field K of odd
characteristic, is an algebraic curve defined by an equation of the
form

C:y?= f(x),

where f(x) is a squarefree polynomial in K[x] of degree 5 or 6.




Elliptic curves group law
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Genus two curves group law
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Abelian surfaces

Definition
An abelian surface is a two-dimensional projective algebraic
variety that is also an algebraic group.

Always isomorphic to one of the following:
@ jacobian of a (hyperelliptic) genus-2 curve

@ product of two elliptic curves



Principal polarization

A principal polarization is an isomorphism \ from an abelian
variety A to its dual, which is of the form

Azt A(k) —  Pic(A)
a —» BLRLL

for some ample sheaf £ on A(k).




Principal polarization

AeA(K) = Pie(Ay
A er t ,

for-some-amplesheaf-Lon-Alk)-

Read: we have equations!
0 y2 = agx® + asx® + agx* + a3x3 + apx® + aix + ag
o (y?> =3+ bix+ bo) x (y?> = x>+ cix + @)
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Supersingular elliptic curves

E is supersingular iff

the p-torsion of E is trivial,

or End(E) is an order in a quaternion algebra,

or the trace of Frobenius is divisible by p,

or the Newton polygon is a straight line segment with slope
1/2,

or the dual of Frobenius is purely inseparable,

or the Hasse invariant is 0,



Superspecial genus two curves

Definition
A p.p. abelian surface defined over a field with characteristic p is
superspecial if the Hasse invariant is zero.

Why?
e Finite amount ~ p3/2880

@ All defined over sz



Superspecial abelian surfaces over 32
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Superspecial abelian surfaces over 32




(2,2)-isogenies

Definition

A (2,2)-isogeny ¢ is an isogeny such that ker ¢ = Z /27 @ 7 /27
and ker ¢ is maximal isotropic with regards to the 2-Weil pairing.

Remark: there are 15 of these (2,2)-isogenies for every A, and at
least 9 are to the same type of abelian surface, so

Jc—>JC/0rE1><E2—>E{><E£



Superspecial p.p. abelian surface (2, 2)-isogeny graph over Fi3.
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Superspecial p.p. abelian surface (2,2)-isogeny graph over F

Isogeny graph Gp:
o Vertices: all p.p. superspecial abelian surfaces over F 2> up to
isomorphism
e genus-2 curves: absolute lgusa invariants (ji, j»,j3) € ng
o products of elliptic curves: j-invariants {j1,j2} C Fp2

e Edges: all (2,2)-isogenies between them



Superspecial p.p. abelian surface (2,2)-isogeny graph over F

Isogeny graph Gp:
o Vertices: all p.p. superspecial abelian surfaces over F 2> up to
isomorphism

e genus-2 curves: absolute lgusa invariants (ji, j»,j3) € ng
o products of elliptic curves: j-invariants {j1,j2} C Fp2

e Edges: all (2,2)-isogenies between them

Intuitively:
o Interior of G,: ~ p3/2880 genus-2 curves
o Boundary of G,: ~ p?/288 products of elliptic curves



Restrict to jacobians of genus-2 curves

Ignore products of elliptic curves:
e O(1/p) chance of encountering
o formulas are less efficient

e what would output be? {j1,/2} vs (j1,j2,/3)



Richelot isogenies

Co:y? = (x—a1)(x—az)(x — a3)(x — as) (x — as)(x — ag)

G Gy Gs
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Richelot isogenies

Co:y? = (x—a1)(x—az)(x — a3)(x — as) (x — as)(x — ag)

G Gy Gs

Take ¢1 : Jg, = Jc, the (2,2)-isogeny with kernel

{07 [(041, 0) - (a27 0)]7 [(013, 0) - (a47 0)]’ [(a57 0) - (CM@, 0)]}

v Cr i y? =671 (GhGs — Gy G) (GLGy — G3G1) (G Gy — G1Gh)

Hy Ha Hs




Avoiding dual isogeny

Continuing with y2 = H; HoHs gives the dual isogeny &1 and the
composition is a (2,2, 2,2)-isogeny:



Avoiding small cycles

Continuing with one factor fixed, e.g. y? = H1HHs, gives a
(2,2)-isogeny ¢, with a composed (4, 2, 2)-isogeny:

#1

Ao > A1 ¢2

Ao




Avoiding small cycles

Continuing with one factor fixed, e.g. y%> = H1H»Hs, gives a
(2,2)-isogeny ¢», with a composed (4,2, 2)-isogeny:

o \

®1 @2

ol /45
A//




Good isogeny extensions

Write Hy = L1Ly, Hy = L3l4, H3 = LsLg then the good extensions
of ¢1 are determined by the quadratic factors

(Lils, LoLs, Lalg), (Lils,Lole, Lals),
(Lila, Lols, LsLe), (Lila, Lole, LsLs),
(Lils, Lols, Lalg), (Lils,Lols, LsLe),
(Lile, Lols, Lals), (Lile, Lols, LsLs).

Composing gives a (4,4)-isogeny.



Security

Given two superspecial genus-2 curves C; and Cy defined over I,
find a (2%, 2k)-isogeny between their jacobians.




Security

Given two superspecial genus-2 curves C; and Cy defined over I,
find a (2%, 2k)-isogeny between their jacobians.

| \

Problem
Given any superspecial genus-2 curve Cy defined over I, find

@ acurve G and a (2", 2k)—isogeny Jo, = Jo,,
@ a curve Cy and a (2K, 2K )-isogeny Jc, — Jes

such that Cy and C} are F,-isomorphic.

A\




Concluding remarks

Advantages:
@ Processing 3 bits at once, with possible parallelization of 3
square root extractions
e Elliptic curves graph size O(p)
Genus-2 curves graph size O(p%)

= same security in smaller fields, e.g. p ~ 280 vs p a2 2256



Concluding remarks

Advantages:

@ Processing 3 bits at once, with possible parallelization of 3
square root extractions

e Elliptic curves graph size O(p)
Genus-2 curves graph size O(p%)
= same security in smaller fields, e.g. p ~ 280 vs p a2 2256
Future research:
@ Practical genus-2 SIDH key exchange?
e Expander properties of G,7



