Compuling symbols in arilhmetic

Hendrik Lenstra NutMiC 2019

Paris

Note: dpta $=$ deterministic polynomial time algorithm

Compenting somulab in arithmetic porver revidue symolo, Artm syontrb, norm rexiure fymbla $\quad\{1,-1\}$.
Legenore symbor $\left(\frac{q}{p}\right) \in\{1,-1\},\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \operatorname{mad} p$. Clamial thenem $\rightarrow d p t a$:
 gween a, b, it compurtes $\left(\frac{a}{b}\right)$.

Reciprovios laws. Set $a, b \in \mathbb{Z}$, ard \& comme, $A>0$ then $\left(a, b_{1}\right)_{2}$

Reciprocity laws. Let $a, 1 \in \mathbb{Z}$, Hal \& comes \mid

$$
\left(\frac{a}{a}\right)=(6.4) \cdot\left(a \cdot a \cdot\left(\frac{b}{a}\right), \quad\left(\frac{2}{a}\right)=(-1)^{\frac{12}{7}},\right.
$$

Lit R be a suture of the uni of entegen of som number full Lit ls CR be en ideal st. (2 midst) $\in(\mathbb{L})^{*}$, and $a \in R$ such that

path $\left(\frac{a}{L}\right) \cdot F$ act: $\left(\frac{n}{I}\right)=\varepsilon(x \mapsto a x, R / L)$
D_{1} Let A be a f.a.g. and $\sigma \in \operatorname{dur} A$.
Then $\varepsilon(\sigma, A)=(\sin -x$ the permutation r of $A)$.
f.a.g. = finite abelian group

$$
\begin{aligned}
& \text { Lumen } \mathcal{H} \cong(\mathbb{Z} / t \mathbb{Z})^{\oplus+} \text { for rome ouse } b \in \mathbb{Z}, r \in \mathbb{Z}_{30} \text {. then } \varepsilon(\sigma A)=\left(\frac{\text { set } \sigma}{t}\right) \\
& A=\left(\mathbb{Z} \operatorname{lo}_{1} \mathbb{Z}\right) A, \oplus(\mathbb{Z} \ln , \mathbb{Z}), 1<m_{1}\left|m_{2}\right| \ldots \ln \quad A /(, A)=(\mathbb{Z} \ln , \mathbb{Z})^{\theta A}
\end{aligned}
$$

Let F be a coul fild, is a fimite enternion of Q_{p} of some p piemen os $\left(Q_{\infty}=\mathbb{R}\right)$.
$(-,-)_{F}, F^{*} \times F^{*} \rightarrow\{1-1\}, \quad(a, k)_{F}= \begin{cases}1 & \text { if } \exists x, y \in F^{p}: a x^{2}+b y^{2}=1 \\ -1 & \text { othemm } x \sqrt[p \neq 2 \quad(a, b)]{p}=\left(\frac{c}{p}\right), \text { in }\end{cases}$
$(9, b)=(b, a)^{-1}$

$$
\left.\begin{array}{l}
(a, b)=(b, a)^{-1} \\
\left(a, a^{\prime}, b\right)=(a, b) \cdot(a, b)
\end{array}\right\}
$$

$(a, 1-a)=1 \quad(a \neq 1)\}(a-a)=1 \quad \frac{p=2:}{} \begin{array}{ll}a=2^{a} \cdot(-1)^{a-1} \cdot 5^{a} \cdot \alpha^{2} \text {, with }\end{array}$ then f hikenrse $\quad\left(a_{2}, a_{-1}, a_{5} \in\{0,1\}\right.$

$$
\left(q \cdot k_{Q_{c}}=(-1)^{-i-1}+a_{2} b_{5}+a_{5} b_{2}\right)^{d} \in Q_{2}^{*} .
$$

Therean, \exists dpta thet on umpar F, a, b, compunten $(a, b)=$ Yem Bom $F \xrightarrow{c o t=M} \Rightarrow \mathbb{Z} \cup\{\infty\}, N_{0}=\infty, F^{*(N}, \mathbb{Z}, 0=\{0, N x \geqslant 0\}$ wing F) $R_{p, p p i n e ~} \pi \in F$ is callel prome if $M \pi=1$. Fill $O, t \mathcal{O}=F_{q,}, q=$ porve

Lit π be a pinns clement Elements V with $(r, t)=1$?

$$
\begin{array}{ll}
\cdot l=-\pi \\
\cdot & \left.1=-c^{2}(\in \in f+\}\right)
\end{array}, b \in\left\langle\xi_{1-1}\right\rangle
$$

- $b=c^{2} \quad(\in e F+z)$
- $\left.b=1-\sum \cdot \pi^{2}, \zeta<\langle \}_{q-1}\right\rangle, i \in \mathbb{Z} \in M$ $\left(\pi^{i}, 1-\left\{\pi^{\prime}\right)=1\right.$

$$
(9,6)=(b, a)^{-1}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\left(a a^{\prime}, k\right)=(a, b) \cdot(a, a) \\
(a, 1-a)=1 \\
(a \neq 1)
\end{array}\right\}(a-a)=1\right)
\end{aligned}
$$

a dermeniste invert bamdenent $\delta \in(1+40) \backslash F^{x^{2},}(\pi, 8)=-1$

Auchor's Noles

The algorithm that I explained for computing the Jacobi symbols in algebraic number fields was taken from a paper "Compuling Jacobi symbols in algebraic number fields", Nieuw Arch. Wisk. 13 (1995), 421-426 of mine. Much basic information about power residue symbols and the norm residue symbol can be found in the exercises at the end of the Brighton proceedings volume "Algebraic number theory" edited by Cassels and Fro:hlich (Academic Press, 1967), which I found myself more useful than the book "Class field theory" by Artin and Tate. The paper "Calculating the power residue symbols and Ibeta" by Koen de Boer and Carlo Pagano (ISSAC'17, July 26-28, 2017, Kaiserslautern, Germany) contains a promising approach to computing general power residue symbols; it is my understanding that Koen de Boer is working on a sequel to this paper, in which Artin symbols will also be considered. The algorithm for computing the norm residue symbol that I outlined in my lecture will be included in the Leiden PhD thesis of Jan Bouw, which will hopefully be available within a year or so. It is strongly inspired by the appendix "Continuous Steinberg symbols" to John Milnor's "Introduction to algebraic K-theory" (Princeton, 1971); in that appendix, Milnor proves a theorem of Moore that is not algorithmic at all but of which the proof given by Milnor is algorithmically very useful; but some additional techniques also come in, especially in the non-quadratic case (which I hardly discussed). Moore's theorem is also behind the "uniqueness statements" about the norm residue symbol that I alluded to in my lecture. For the quadratic case, you will find in hetps://wstein.org/edu/2010/681d/projects/ alyson_deines/CompMathHilbertSymbols.pdf an algorithm for computing the norm residue symbol that is due to John Voight and distankly related to the algorithm I sketched in my lecture; the quadratic case has also been implemented on various computer algebra systems.

