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Goals of this talk

1. Highlight some of the complications with assessing the
“cost” of known attacks on computational problems.

2. Highlight some of the difficulties in comparing the costs
of classical and quantum attacks.

3. Justify key size recommendations for SIDH (and SIKE).
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Assessing hardness of comp. problems

1. Assess the cost of known attacks.

There are many factors to consider:

! Running time (number of arithmetic operations)

! Parallelizability

! Space requirements

! Communication costs

! Possibility of custom-designed machines

! Quantum resources

2. Assess the possibility of new attacks in the future.
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RSA vs. ECC key sizes
Running time of NFS for factoring n:

O(exp(1.923+o(1))(logn)1/3(log logn)2/3).

Cost assessment is complicated:

! Communication costs for sieving (best done in cache/RAM)

! Linear algebra does not parallelize well

! Possibility of specialized hardware (TWINKLE, TWIRL)

In contrast, the cost of Pollard’s rho attack on the ECDLP in E(Fp)
is straightforward to assess:

! Expected running time is
√
πn/2 (n = #E(Fp) ≈ p)

! Perfectly parallelizable (van Oorschot-Wiener (VW))

! Negligible storage

! Negligible communication costs
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RSA vs. ECC key sizes

After much debate, NIST issued the following key size

recommendations in 2005 (SP 800-57) based on the running time

of the fastest known (classical) attacks:

Bits of Block Hash RSA ECC

security cipher function log2 n log2 p

80 SKIPJACK (SHA-1) 1024 160

112 Triple-DES SHA-224 2048 224

128 AES-128 SHA-256 3072 256

192 AES-192 SHA-384 7680 384

256 AES-256 SHA-512 15360 512

TLS 1.2: 2048-bit RSA or 256-bit ECC for key agreement.
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Grover’s search and AES

Let F : {0, 1}ℓ → {0, 1} be a function such that:

(i) F is efficiently computable; and

(ii) F (x) = 1 for exactly p inputs x ∈ {0, 1}ℓ.

Grover’s Search (1996) is a quantum algorithm that finds an

x ∈ {0, 1}ℓ with F (x) = 1 in 2ℓ/2/p1/2 evaluations of F .

Key recovery: Consider AES with an ℓ-bit key. Suppose that we
have r known plaintext-ciphertext pairs (mi, ci), where r is such that
the expected number of false keys is very close to 0.

Define F : {0, 1}ℓ → {0, 1} by F (k) = 1 if AESk(mi) = ci for all
1 ≤ i ≤ r; and F (k) = 0 otherwise.

Then Grover’s search (with p = 1) can find the secret key k in 2ℓ/2

operations.

Grover’s search is often used to justify moving from AES-128 to

AES-256.
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Quantum resource estimates (AES-128)
Grassl-Langenberg-Roetteler-Steinwandt (PQCrypto 2016)
! # circuits: 1

! # qubits: 2,953

! # gates: 287

! depth: 281

NIST: Quantum attacks are restricted to a fixed circuit depth, called
MAXDEPTH. Plausible values for MAXDEPTH:

! 240 gates (approx. # of gates that presently envisioned
quantum computing architectures are expected to serially
perform in a year).

! 264 gates (approx. # of gates that current classical computing
architectures can perform serially in a decade).

! 296 gates (approx. # of gates that atomic scale qubits with
speed of light propagation times could perform in a millennium).

The attack needs to be parallelized.
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Grover’s search doesn’t parallelize well

Optimal strategy (Zalka 1999): Divide the search space into
M subsets, each of size 2ℓ/M . Each of the M processors
performs Grover’s search on one subset.

Running time (per processor): 2ℓ/2/
√
M .

depth:
# circuits:
# qubits/circuit:
# gates/circuit:
Total # gates:

281

1
2,953
287

287

240

282

2,953
246

2128

248

266

2,953
254

2120

264

234

2,953
270

2104

– 8



Quantum error correction

Self-correcting quantum memory may not exist.

Actively-controlled quantum memories:

! To protect a circuit of depth D and
width W , a surface code requires
Θ(log2(DW )) physical qubits per
logical qubit.

! The active error correction is applied
with a classical processor in a regular
cycle (e.g. once every 200ns).

arxiv.org/abs/1208.0928

! The overall cost of surface code computation is Ω(log2(DW ))
RAM operations per logical qubit per layer of logical circuit
depth.

! Quantum error correction has large overhead.

! This explains why DW -cost is a realistic cost measure for a
quantum algorithm.
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AES-128 security, revisited
Quantum
depth:
circuits:
qubits/circuit:
gates/circuit:
Total gates:

#
240

282

2,953
246

2128

Classical
depth:
processors:

gates/processor:
Total gates:

#
235 AES ops
293

250

2143

! The 293 classical processors used for error correction could be
repurposed to perform exhaustive key search in time 235 AES
operations.

! It isn’t clear then that Grover’s search is more effective than
classical exhaustive search in breaking AES-128.

! Nevertheless, since AES-256 is only marginally slower than
AES-128, it is reasonable to move from AES-128 to AES-256.
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NIST Category 1

! Any attack must require computational resources comparable
to or greater than those required for key search on AES-128.

! ...with respect to all metrics that NIST deems to be potentially
relevant to practical security.

! NIST intends to consider a variety of possible metrics,
reflecting different predictions about the future development of
quantum and classical computing technology.

! Fixed circuit depth (MAXDEPTH)

! Cost metric: Number of gates

• 2143 classical gates

• 2170/MAXDEPTH quantum gates
(2130 quantum gates if MAXDEPTH = 240)

! Category 3 (AES-192):

• 2207 classical gates, 2233/MAXDEPTH quantum gates
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Hash function collisions: Grover

Let H : {0, 1}∗ → {0, 1}ℓ be an ℓ-bit hash function.

! A collision is a pair (x, y) with H(x) = H(y) and x ̸= y.

! Define F : {0, 1}ℓ+c × {0, 1}ℓ+c → {0, 1} by

F (x, y) =

{

0, if H(x) ̸= H(y),

1, if H(x) = H(y) and x ̸= y.

The expected number of collisions is ≈ 2ℓ+2c.

! Grover’s search with M processors can find a collision in time
2ℓ/2/

√
M .

! If M = 2ℓ/3, the time is 2ℓ/3.

! So, collisions for SHA-256 can be found in time 285.3.
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Collision finding: Classical (VW)

! The fastest generic classic finding algorithm for finding a
collision for f : S → S (where #S = N ) is due to van
Oorschot-Wiener (VW).

! Let θ be the distinguishing probability for elements in S.

! Expected time ≈
√

πN/2 + 2.5
θ , Space ≈ θ

√

πN/2.
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Hash function collisions: VW

The VW algorithm for finding a col-
lision for H : {0, 1}ℓ → {0, 1}ℓ:
! Has expected running time
√

π2ℓ/2 ≈ 2ℓ/2

! Is perfectly parallelizable

! Has negligible storage

! Has negligible communication
costs

With M = 2ℓ/3 processors, a collision can be found in time 2ℓ/6.
(Grover’s search takes time 2ℓ/3.)
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Hash function collisions: BHT

Brassard-Høyer-Tapp (BHT) (1998)

Fix x1, x2, . . . , xN ∈ {0, 1}ℓ+c. Define F : {0, 1}ℓ+c → {0, 1} by

F (y) =

{

1, if H(y) = H(xi) and y ̸= xi for some i,

0, otherwise.

Grover’s search (one processor) finds a collision in time

N + 2ℓ/2/N1/2.

If N = 2ℓ/3, this time is 2ℓ/3.

Bernstein (2009) argued that BHT is inferior to VW since:

! Memory access is expensive (on the order of N1/2).

! Quantum memory is expensive.
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NIST Category 2

! Any attack must require computational resources comparable
to or greater than those required for collision search on
SHA-256.

! Cost metric: Number of gates

• 2146 classical gates

! Category 1:

• 2143 classical gates, 2170/MAXDEPTH quantum gates.

! “...NIST will assume that the five security strengths are
correctly ordered in terms of practical security.”

! Category 4 (SHA-384):

• 2210 classical gates
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SIDH parameters

Unauthenticated key agreement scheme (Jao & De Feo, 2011).

! Let p = 2eA3eB − 1 be a prime with 2eA ≈ 3eB ≈ p1/2.

! Let E be a (supersingular) elliptic curve defined over Fp2 with

#E(Fp2) = (p+ 1)2.

! Then E(Fp2) ∼= Zp+1 ⊕ Zp+1, whence E[2eA ], E[3eB ] ⊆ E(Fp2).
Let {PA, QA}, {PB, QB} be bases for E[2eA ], E[3eB ].

! Write (ℓ, e) to mean either (2, eA) or (3, eB). Similarly for {P,Q}.

! For each order-ℓe subgroup S of E[ℓe], there exists a degree-ℓe

(separable) isogeny φS : E → E/S over Fp2 with kernel S.
The isogeny is unique up to isomorphism and can be efficiently
computed.

! Hence, the number of degree-ℓe isogenies φ : E → E′ is
(ℓ+ 1)ℓe−1 ≈ p1/2.

! SIDH parameters: eA, eB, p, E, PA, QA, PB, QB.
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SIDH

1. Alice selects a random order-2eA point RA = mAPA + nAQA

and computes the isogeny φA : E → E/A, where A = ⟨RA⟩.
Alice transmits E/A, φA(PB), φA(QB) to Bob.

2. Bob similarly transmits E/B, φB(PA), φB(QA) to Alice.

3. Alice computes φB(RA) = mAφB(PA) + nAφB(QA) and
(E/B)/⟨φB(RA)⟩.

4. Similarly, Bob computes
(E/A)/⟨φA(RB)⟩.

5. The compositions of isogenies
E → E/A → (E/A)/⟨φA(RB)⟩ and
E → E/B → (E/B)/⟨φB(RA)⟩
have kernel ⟨RA, RB⟩.

6. The shared secret is the j-invariant
of these curves.
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CSSI

! Hardness of the Computational SuperSingular Isogeny
problem (CSSI) is necessary for the security of SIDH:

! Given the SIDH parameters eA, eB, p, E, PA, QA, PB, QB, and
E/A, φA(PB), φA(QB), compute a degree-2eA isogeny
φA : E → E/A.

! We will study a simplification of the problem that omits the
auxiliary points φA(PB) and φA(QB):

CSSI: Given the SIDH parameters eA, eB, p, E, PA, QA, PB,
QB, and E/A, compute a degree-2eA isogeny φA : E → E/A.

! CSSI was first formulated by Charles, Goren and Lauter in
2005.
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Supersingular isogeny graphs

! Let R denote the set of all j-invariants of supersingular elliptic
curves over Fp2 ; then #R ≈ p/12 ≈ ℓ2e.

! The supersingular isogeny graph Gℓ(Fp2) has vertex set R, and
edges (j1, j2) with multiplicity equal to the multiplicity of j2 as a
root of the modular polynomial Φℓ(j1, Z) over Fp2 .

! Gℓ is (ℓ+ 1)-regular.

! Pizer showed that Gℓ(Fp2) is a Ramanujan graph:

• Optimal expander graph.

• The endpoint of a random walk approximates the uniform
distribution after O(log v) steps, where v ≈ ℓ2e.

! Let E1 = E, j1 = j(E1), E2 = E/A, j2 = j(E2).

! The CSSI problem is to find a path of length e from j1 to j2 in
Gℓ(Fp2).
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CSSI attacks

The fastest CSSI attacks that were first identified were:

! Classical: Meet-in-the-middle O(p1/4).

! Quantum: Tani’s algorithm O(p1/6).

Consequently, primes p of bitlength ≈ 768 were recommended to
attain the 128-bit security level.

However, both attacks have significant storage requirements:
p1/4 and p1/6, respectively.

Thus, a concrete cost analysis might justify using smaller p while

still attaining the 128-bit security level.
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Meet-in-the-middle (MITM) attack

! Denote the number of order-ℓe/2 subgroups of E[ℓe] by
N ≈ p1/4.

! For i = 1, 2, let Ri denote that set of j-invariants of elliptic
curves over Fp2 that are ℓe/2-isogenous to Ei.

! Then one expects that #R1 ≈ #R2 ≈ N ≪ #R.
It is also reasonable to assume that #(R1 ∩R2) = 1.

MITM

Time: 2N
Space: N
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VW golden collision finding

van Oorschot &
Wiener, 1996

Adj et al., 2018

! Let I = {1, 2, . . . . , N} and S = {1, 2}× I.

! For i = 1, 2, let: Ai = all order-ℓe/2 subgroups of Ei[ℓe].
hi : I → Ai bijections.
fi : Ai → Ri, fi(Ai) = j(Ei/Ai).

! Let g : R → S be a random function

! Define f : S → S by f : (i, y) 0→ g(fi(hi(y)))

! The expected number of (unordered) collisions for f is ≈ N .

! Suppose j(E1/A1) = j(E2/A2), y1 = h−1
1 (A1), y2 = h−1

2 (A2).

! We seek the golden collision (1, y1), (2, y2).
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VW golden collision finding
Main idea: Find many collisions, until the gold. collision is obtained.

Problem: The golden collision might be hard to find.

Solution: Change f periodically (by changing g).
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Finding the golden collision

! Storage: Space for w triples (xi,a, a, xi,0).

! Set θ = α
√

w/(2N).

! Use each version of f to produce βw distinguished points.

! Store a distinguished point in a memory cell determined by
hashing it.

! For α = 2.25, β = 10:

• One expects 1.3w collisions per function version.

• One expects 1.1w distinct collisions per function version.

• The expected time to find the golden collision is

≈
N

1.1w
· 10w ·

2N

2.25
√
w

≈ N3/2/w1/2 ≈ p3/8/w1/2.

! The algorithm parallelizes well.
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MITM vs. VW

! MITM (time-memory tradeoff):
Time: N2/w Space: w

! VW golden collision search:

Time: N3/2/w1/2 Space: w

! Conclusion: VW is superior to
MITM for w < N .
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Quantum attacks
CSSI can be viewed as an instance of the claw finding problem:

Consider f : X → Z, g : Y → Z with |X| = |Y | = N ≪ |Z|. Given
black-box access to f and g, find (x, y) ∈ X × Y with f(x) = g(y).

In CSSI: X = degree-ℓe/2 isogenies originating at E1,
Y = degree-ℓe/2 isogenies originating at E2,
Z = set of j-invariants of all supersingular elliptic curves,
f, g record the j-invariants of the image curves,

and there is exactly one claw.
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Grover’s search

! Define F : X × Y → Z by F (x, y) = 1 if f(x) = g(y), and
F (x, y) = 0 otherwise.

! Grover’s search can be used to find a claw in time
√
N2 ≈ p1/4.

! VW: N3/2/(Mw1/2), Grover: N/
√
M .

! Example: Consider ℓ = 2, e = 216, N ≈ 2108, w = 280,
MAXDEPTH=264.

• Then VW total run time is 2125.7 degree-2108 isogeny
computations.

• An optimistic estimate for the depth of a quantum circuit for
a degree-2108 isogeny computation is 214.

• One quantum circuit can perform 250 isogeny computations,
so M = 2116 circuits are required for Grover.

• So, NIST’s Category 1 requirements are met.
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Tani’s algorithm

! The vertices of the Johnson graph J(X,T ) are the T -subsets
of X, with two subsets begin adjacent iff their intersection has
size T − 1.

! Tani: Perform a quantum random walk (with uniform
probabilities) in G = J(X,T )× J(Y, T ).

! The walk on G is a Markov process with uniform probabilities
and spectral gap δ ≈ 1

T .

! The proportion of vertices that contain a claw is

ϵ =

(

(N−1
T−1

)

(N
T

)

)2

=
T 2

N2
.
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Quantum random walk
Classical:
Construct a random vertex. (S)
Repeat O(1ϵ ) times:

Repeat O(1δ ) times:
Take one random step in G. (U)

Check if the current vertex contains a claw. (C)

Cost: O
(

S + 1
ϵ

(

1
δU + C

))

.

Quantum (Magniez-Nayak-Roland-Santha):
Create a superposition of random vertices. (S)
Repeat O( 1√

ϵ
) times:

Repeat O( 1√
δ
) times:

Take one “quantum” random step in G. (U)
“Quantum” check for a claw. (C)

Cost: O
(

S + 1√
ϵ

(

1√
δ
U + C

))

.
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Tani: query optimal

Cost: O
(

S + 1√
ϵ

(

1√
δ
U + C

))

, ϵ = T 2

N2 , δ ≈ 1
T .

Jaques & Schanck (CRYPTO 2019)

! Cost = O(T + N
T 1/2 ).

! The cost is optimized when T ≈ N2/3, yielding a running time
≈ N2/3 = p1/6 degree-ℓe/2 isogeny computations.

! A vertex has size 2T , so p1/6 classical processors are needed
in the active error control model.

! These p1/6 processors (and p1/6 classical memory) can be
used with VW golden collision search with running time

p3/8

p1/6 · p1/12
= p1/8.
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Tani: Non-asymptotic cost estimates

Jaques & Schanck (CRYPTO 2019)

! The optimal T is chosen based on memory access costs and
oracle costs.

! Tani suffers from the same parallelization issues as Grover
(however, the naive parallelization strategy may not be optimal).

! Note that Tani’s algorithm with T = 1 is essentially the same as
Grover’s algorithm.

! Conclusion: Tani is costlier than VW

• with MAXDEPTH = 264

• DW-cost

• G-cost
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Concrete parameters for SIDH
! 128-bit security-level (also: NIST Categories 1 and 2)

• p = p434 = 22163137 − 1.

• VW: w = 280, θ ≈ 1/213.6, Time = 2125.7 (isog.).

Protocol CLN + enhancements
phase p751 p434
Key Alice 26.9 5.3
Gen. Bob 30.5 6.0

Key Alice 24.9 5.0
Gen. Bob 28.6 5.8

(Times are in 106 clock cycles on an Intel Core i7-6700)

! 192-bit security level (also: NIST Categories 3 and 4)

• p = p610 = 23053192 − 1.

• VW: w = 280, θ ≈ 1/235.9, Time = 2192.6 (isog.).

! p434 and p610 have been included in the Round 2 SIKE
submission to the NIST PQC competition.
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Questions

! Can the analysis of VW golden collision finding be made more
rigorous?

! Can the CSSI problem be formulated as one of finding a single
collision (not a golden collision)?

! Are the assumptions on classical resources and quantum
resources reasonable for making long-term key-size
recommendations?

! Can Tani’s algorithm be parallelized in a cost-effective way?
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