The Computational Supersingular Isogeny Problem

Alfred Menezes

NutMiC 2019

Goals of this talk

- 1. Highlight some of the complications with assessing the "cost" of known attacks on computational problems.
- 2. Highlight some of the difficulties in comparing the costs of classical and quantum attacks.
- 3. Justify key size recommendations for SIDH (and SIKE).

Assessing hardness of comp. problems

1. Assess the cost of known attacks.

There are many factors to consider:

- ► Running time (number of arithmetic operations)
- Parallelizability
- Space requirements
- ▶ Communication costs
- Possibility of custom-designed machines
- Quantum resources
- 2. Assess the possibility of new attacks in the future.

RSA vs. ECC key sizes

Running time of NFS for factoring *n*:

$$O(\exp^{(1.923+o(1))(\log n)^{1/3}(\log\log n)^{2/3}}).$$

Cost assessment is complicated:

- Communication costs for sieving (best done in cache/RAM)
- Linear algebra does not parallelize well
- Possibility of specialized hardware (TWINKLE, TWIRL)

In contrast, the cost of Pollard's rho attack on the ECDLP in $E(\mathbb{F}_p)$ is straightforward to assess:

- ► Expected running time is $\sqrt{\pi n}/2$ $(n = \#E(\mathbb{F}_p) \approx p)$
- Perfectly parallelizable (van Oorschot-Wiener (VW))
- Negligible storage
- ▶ Negligible communication costs

RSA vs. ECC key sizes

After much debate, NIST issued the following key size recommendations in 2005 (SP 800-57) based on the running time of the fastest known (classical) attacks:

Bits of	Block	Hash	RSA	ECC
security	cipher	function	$\log_2 n$	$\log_2 p$
80	SKIPJACK	(SHA-1)	1024	160
112	Triple-DES	SHA-224	2048	224
128	AES-128	SHA-256	3072	256
192	AES-192	SHA-384	7680	384
256	AES-256	SHA-512	15360	512

TLS 1.2: 2048-bit RSA or 256-bit ECC for key agreement.

Grover's search and AES

Let $F: \{0,1\}^{\ell} \to \{0,1\}$ be a function such that:

- (i) F is efficiently computable; and
- (ii) F(x) = 1 for exactly p inputs $x \in \{0, 1\}^{\ell}$.

Grover's Search (1996) is a quantum algorithm that finds an $x \in \{0,1\}^{\ell}$ with F(x) = 1 in $2^{\ell/2}/p^{1/2}$ evaluations of F.

Key recovery: Consider AES with an ℓ -bit key. Suppose that we have r known plaintext-ciphertext pairs (m_i, c_i) , where r is such that the expected number of false keys is very close to 0.

Define $F: \{0,1\}^{\ell} \to \{0,1\}$ by F(k) = 1 if $\mathsf{AES}_k(m_i) = c_i$ for all $1 \le i \le r$; and F(k) = 0 otherwise.

Then Grover's search (with p=1) can find the secret key k in $2^{\ell/2}$ operations.

Grover's search is often used to justify moving from AES-128 to AES-256.

Quantum resource estimates (AES-128)

Grassl-Langenberg-Roetteler-Steinwandt (PQCrypto 2016)

▶ # circuits: 1

▶ # qubits: 2,953

• # gates: 2^{87}

▶ depth: 2⁸¹

NIST: Quantum attacks are restricted to a fixed circuit depth, called MAXDEPTH. Plausible values for MAXDEPTH:

- ≥ 2⁴⁰ gates (approx. # of gates that presently envisioned quantum computing architectures are expected to serially perform in a year).
- ≥ 2⁶⁴ gates (approx. # of gates that current classical computing architectures can perform serially in a decade).
- 2⁹⁶ gates (approx. # of gates that atomic scale qubits with speed of light propagation times could perform in a millennium).

The attack needs to be parallelized.

Grover's search doesn't parallelize well

Optimal strategy (Zalka 1999): Divide the search space into M subsets, each of size $2^{\ell}/M$. Each of the M processors performs Grover's search on one subset.

Running time (per processor): $2^{\ell/2}/\sqrt{M}$.

depth:	2^{81}	2^{40}	2^{48}	2^{64}
# circuits:	1	2^{82}	2^{66}	2^{34}
# qubits/circuit:	2,953	2,953	2,953	2,953
# gates/circuit:	2^{87}	2^{46}	2^{54}	2^{70}
Total # gates:	2^{87}	2^{128}	2^{120}	2^{104}

Quantum error correction

Self-correcting quantum memory may not exist.

Actively-controlled quantum memories:

▶ To protect a circuit of depth D and width W, a surface code requires $\Theta(\log^2(DW))$ physical qubits per logical qubit.

► The active error correction is applied with a classical processor in a regular cycle (e.g. once every 200*ns*).

arxiv.org/abs/1208.0928

- ▶ The overall cost of surface code computation is $\Omega(\log^2(DW))$ RAM operations per logical qubit per layer of logical circuit depth.
- Quantum error correction has large overhead.
- This explains why DW-cost is a realistic cost measure for a quantum algorithm.

AES-128 security, revisited

Quantum # Classical #

depth: 2^{40} depth: 2^{35} AES ops

circuits: 2^{82} processors: 2^{93}

qubits/circuit: 2,953

gates/circuit: 2^{46} gates/processor: 2^{50}

Total gates: 2^{128} Total gates: 2^{143}

- ▶ The 2^{93} classical processors used for error correction could be repurposed to perform exhaustive key search in time 2^{35} AES operations.
- ► It isn't clear then that Grover's search is more effective than classical exhaustive search in breaking AES-128.
- ► Nevertheless, since AES-256 is only marginally slower than AES-128, it is reasonable to move from AES-128 to AES-256.

NIST Category 1

- ► Any attack must require computational resources comparable to or greater than those required for key search on AES-128.
- ...with respect to all metrics that NIST deems to be potentially relevant to practical security.
- NIST intends to consider a variety of possible metrics, reflecting different predictions about the future development of quantum and classical computing technology.
- Fixed circuit depth (MAXDEPTH)
- ▶ Cost metric: Number of gates
 - 2¹⁴³ classical gates
 - 2^{170} /MAXDEPTH quantum gates (2^{130} quantum gates if MAXDEPTH = 2^{40})
- Category 3 (AES-192):
 - 2²⁰⁷ classical gates, 2²³³/MAXDEPTH quantum gates

Hash function collisions: Grover

Let $H: \{0,1\}^* \to \{0,1\}^{\ell}$ be an ℓ -bit hash function.

- ▶ A collision is a pair (x, y) with H(x) = H(y) and $x \neq y$.
- ▶ Define $F: \{0,1\}^{\ell+c} \times \{0,1\}^{\ell+c} \to \{0,1\}$ by

$$F(x,y) = \left\{ \begin{array}{ll} 0, & \text{if } H(x) \neq H(y), \\ 1, & \text{if } H(x) = H(y) \text{ and } x \neq y. \end{array} \right.$$

The expected number of collisions is $\approx 2^{\ell+2c}$.

- ▶ Grover's search with M processors can find a collision in time $2^{\ell/2}/\sqrt{M}$.
- ▶ If $M = 2^{\ell/3}$, the time is $2^{\ell/3}$.
- \blacktriangleright So, collisions for SHA-256 can be found in time $2^{85.3}$.

Collision finding: Classical (VW)

- The fastest generic classic finding algorithm for finding a collision for $f: S \to S$ (where #S = N) is due to van Oorschot-Wiener (VW).
- \blacktriangleright Let θ be the distinguishing probability for elements in S.

▶ Expected time $\approx \sqrt{\pi N/2} + \frac{2.5}{\theta}$, Space $\approx \theta \sqrt{\pi N/2}$.

Hash function collisions: VW

The VW algorithm for finding a collision for $H: \{0,1\}^{\ell} \to \{0,1\}^{\ell}$:

- ▶ Has expected running time $\sqrt{\pi 2^\ell/2} \approx 2^{\ell/2}$
- ▶ Is perfectly parallelizable
- ▶ Has negligible storage
- Has negligible communication costs

With $M=2^{\ell/3}$ processors, a collision can be found in time $2^{\ell/6}$. (Grover's search takes time $2^{\ell/3}$.)

Hash function collisions: BHT

Brassard-Høyer-Tapp (BHT) (1998)

Fix $x_1, x_2, \dots, x_N \in \{0, 1\}^{\ell + c}$. Define $F : \{0, 1\}^{\ell + c} \to \{0, 1\}$ by

$$F(y) = \begin{cases} 1, & \text{if } H(y) = H(x_i) \text{ and } y \neq x_i \text{ for some } i, \\ 0, & \text{otherwise.} \end{cases}$$

Grover's search (one processor) finds a collision in time

$$N + 2^{\ell/2}/N^{1/2}$$
.

If $N=2^{\ell/3}$, this time is $2^{\ell/3}$.

Bernstein (2009) argued that BHT is inferior to VW since:

- ▶ Memory access is expensive (on the order of $N^{1/2}$).
- Quantum memory is expensive.

NIST Category 2

- ► Any attack must require computational resources comparable to or greater than those required for collision search on SHA-256.
- ▶ Cost metric: Number of gates
 - 2¹⁴⁶ classical gates
- ► Category 1:
 - ullet 2^{143} classical gates, $2^{170}/\text{MAXDEPTH}$ quantum gates.
- "...NIST will assume that the five security strengths are correctly ordered in terms of practical security."
- Category 4 (SHA-384):
 - 2²¹⁰ classical gates

SIDH parameters

Unauthenticated key agreement scheme (Jao & De Feo, 2011).

- ▶ Let $p = 2^{e_A}3^{e_B} 1$ be a prime with $2^{e_A} \approx 3^{e_B} \approx p^{1/2}$.
- Let E be a (supersingular) elliptic curve defined over \mathbb{F}_{p^2} with $\#E(\mathbb{F}_{p^2})=(p+1)^2$.
- ▶ Then $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}_{p+1} \oplus \mathbb{Z}_{p+1}$, whence $E[2^{e_A}], E[3^{e_B}] \subseteq E(\mathbb{F}_{p^2})$. Let $\{P_A, Q_A\}, \{P_B, Q_B\}$ be bases for $E[2^{e_A}], E[3^{e_B}]$.
- ▶ Write (ℓ, e) to mean either $(2, e_A)$ or $(3, e_B)$. Similarly for $\{P, Q\}$.
- For each order- ℓ^e subgroup S of $E[\ell^e]$, there exists a degree- ℓ^e (separable) isogeny $\phi_S: E \to E/S$ over \mathbb{F}_{p^2} with kernel S. The isogeny is unique up to isomorphism and can be efficiently computed.
- ▶ Hence, the number of degree- ℓ^e isogenies $\phi: E \to E'$ is $(\ell+1)\ell^{e-1} \approx p^{1/2}$.
- \triangleright SIDH parameters: $e_A, e_B, p, E, P_A, Q_A, P_B, Q_B$.

SIDH

- 1. Alice selects a random order- 2^{e_A} point $R_A = m_A P_A + n_A Q_A$ and computes the isogeny $\phi_A : E \to E/A$, where $A = \langle R_A \rangle$. Alice transmits E/A, $\phi_A(P_B)$, $\phi_A(Q_B)$ to Bob.
- 2. Bob similarly transmits E/B, $\phi_B(P_A)$, $\phi_B(Q_A)$ to Alice.
- 3. Alice computes $\phi_B(R_A) = m_A \phi_B(P_A) + n_A \phi_B(Q_A)$ and $(E/B)/\langle \phi_B(R_A) \rangle$.
- 4. Similarly, Bob computes $(E/A)/\langle \phi_A(R_B) \rangle$.
- 5. The compositions of isogenies $E \to E/A \to (E/A)/\langle \phi_A(R_B) \rangle$ and $E \to E/B \to (E/B)/\langle \phi_B(R_A) \rangle$ have kernel $\langle R_A, R_B \rangle$.
- 6. The shared secret is the j-invariant of these curves.

CSSI

- ► Hardness of the Computational SuperSingular Isogeny problem (CSSI) is necessary for the security of SIDH:
- ▶ Given the SIDH parameters e_A , e_B , p, E, P_A , Q_A , P_B , Q_B , and E/A, $\phi_A(P_B)$, $\phi_A(Q_B)$, compute a degree- 2^{e_A} isogeny $\phi_A: E \to E/A$.
- ▶ We will study a simplification of the problem that omits the auxiliary points $\phi_A(P_B)$ and $\phi_A(Q_B)$:

CSSI: Given the SIDH parameters e_A , e_B , p, E, P_A , Q_A , P_B , Q_B , and E/A, compute a degree- 2^{e_A} isogeny $\phi_A: E \to E/A$.

CSSI was first formulated by Charles, Goren and Lauter in 2005.

Supersingular isogeny graphs

- ▶ Let R denote the set of all j-invariants of supersingular elliptic curves over \mathbb{F}_{p^2} ; then $\#R \approx p/12 \approx \ell^{2e}$.
- ► The supersingular isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ has vertex set R, and edges (j_1, j_2) with multiplicity equal to the multiplicity of j_2 as a root of the modular polynomial $\Phi_{\ell}(j_1, Z)$ over \mathbb{F}_{p^2} .
- ▶ \mathcal{G}_{ℓ} is $(\ell+1)$ -regular.
- ▶ Pizer showed that $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ is a Ramanujan graph:
 - Optimal expander graph.
 - The endpoint of a random walk approximates the uniform distribution after $O(\log v)$ steps, where $v \approx \ell^{2e}$.
- ▶ Let $E_1 = E$, $j_1 = j(E_1)$, $E_2 = E/A$, $j_2 = j(E_2)$.
- ▶ The CSSI problem is to find a path of length e from j_1 to j_2 in $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$.

CSSI attacks

The fastest CSSI attacks that were first identified were:

- ▶ Classical: Meet-in-the-middle $O(p^{1/4})$.
- **Quantum:** Tani's algorithm $O(p^{1/6})$.

Consequently, primes p of bitlength ≈ 768 were recommended to attain the 128-bit security level.

However, both attacks have significant storage requirements: $p^{1/4}$ and $p^{1/6}$, respectively.

Thus, a concrete cost analysis might justify using smaller p while still attaining the 128-bit security level.

Meet-in-the-middle (MITM) attack

- ▶ Denote the number of order- $\ell^{e/2}$ subgroups of $E[\ell^e]$ by $N \approx p^{1/4}$.
- For i=1,2, let R_i denote that set of j-invariants of elliptic curves over \mathbb{F}_{p^2} that are $\ell^{e/2}$ -isogenous to E_i .
- ► Then one expects that $\#R_1 \approx \#R_2 \approx N \ll \#R$. It is also reasonable to assume that $\#(R_1 \cap R_2) = 1$.

MITM

Time: 2N

Space: N

VW golden collision finding

van Oorschot & Wiener, 1996

Adj et al., 2018

- ▶ Let $I = \{1, 2,, N\}$ and $S = \{1, 2\} \times I$.
- For i = 1, 2, let: $A_i = \text{all order-}\ell^{e/2}$ subgroups of $E_i[\ell^e]$. $h_i: I \to A_i$ bijections. $f_i: A_i \to R_i, \quad f_i(A_i) = j(E_i/A_i).$
- ▶ Let $g: R \rightarrow S$ be a random function
- ▶ Define $f: S \to S$ by $f: (i, y) \mapsto g(f_i(h_i(y)))$
- ▶ The expected number of (unordered) collisions for f is $\approx N$.
- ▶ Suppose $j(E_1/A_1) = j(E_2/A_2)$, $y_1 = h_1^{-1}(A_1)$, $y_2 = h_2^{-1}(A_2)$.
- \blacktriangleright We seek the golden collision $(1, y_1)$, $(2, y_2)$.

VW golden collision finding

Main idea: Find many collisions, until the gold. collision is obtained.

Problem: The golden collision might be hard to find.

Solution: Change f periodically (by changing g).

Finding the golden collision

- **Storage:** Space for w triples $(x_{i,a}, a, x_{i,0})$.
- \blacktriangleright Set $\theta = \alpha \sqrt{w/(2N)}$.
- ▶ Use each version of f to produce βw distinguished points.
- Store a distinguished point in a memory cell determined by hashing it.
- \blacktriangleright For $\alpha = 2.25$, $\beta = 10$:
 - One expects 1.3w collisions per function version.
 - One expects 1.1w distinct collisions per function version.
 - The expected time to find the golden collision is

$$\approx \frac{N}{1.1w} \cdot 10w \cdot \frac{2N}{2.25\sqrt{w}} \approx N^{3/2}/w^{1/2} \approx p^{3/8}/w^{1/2}.$$

The algorithm parallelizes well.

MITM vs. VW

MITM (time-memory tradeoff):

Time: N^2/w Space: w

➤ VW golden collision search:

Time: $N^{3/2}/w^{1/2}$ Space: w

► Conclusion: VW is superior to MITM for w < N.

Quantum attacks

CSSI can be viewed as an instance of the claw finding problem:

Consider $f: X \to Z$, $g: Y \to Z$ with $|X| = |Y| = N \ll |Z|$. Given black-box access to f and g, find $(x, y) \in X \times Y$ with f(x) = g(y).

In CSSI: $X = \text{degree-}\ell^{e/2}$ isogenies originating at E_1 , $Y = \text{degree-}\ell^{e/2}$ isogenies originating at E_2 , Z = set of j-invariants of all supersingular elliptic curves, f,g record the j-invariants of the image curves, and there is exactly one claw.

Grover's search

- ▶ Define $F: X \times Y \to Z$ by F(x,y) = 1 if f(x) = g(y), and F(x,y) = 0 otherwise.
- ▶ Grover's search can be used to find a claw in time $\sqrt{N^2} \approx p^{1/4}$.
- ▶ VW: $N^{3/2}/(Mw^{1/2})$, Grover: N/\sqrt{M} .
- **Example:** Consider $\ell=2, \ e=216, \ N\approx 2^{108}, \ w=2^{80},$ MAXDEPTH= $2^{64}.$
 - Then VW total run time is $2^{125.7}$ degree- 2^{108} isogeny computations.
 - An optimistic estimate for the depth of a quantum circuit for a degree- 2^{108} isogeny computation is 2^{14} .
 - One quantum circuit can perform 2^{50} isogeny computations, so $M=2^{116}$ circuits are required for Grover.
 - So, NIST's Category 1 requirements are met.

Tani's algorithm

- ▶ The vertices of the Johnson graph J(X,T) are the T-subsets of X, with two subsets begin adjacent iff their intersection has size T-1.
- ► Tani: Perform a quantum random walk (with uniform probabilities) in $G = J(X,T) \times J(Y,T)$.
- ▶ The walk on G is a Markov process with uniform probabilities and spectral gap $\delta \approx \frac{1}{T}$.
- ▶ The proportion of vertices that contain a claw is

$$\epsilon = \left(\frac{\binom{N-1}{T-1}}{\binom{N}{T}}\right)^2 = \frac{T^2}{N^2}.$$

Quantum random walk

Classical:

Construct a random vertex. (S)

Repeat $O(\frac{1}{\epsilon})$ times:

Repeat $O(\frac{1}{\delta})$ times:

Take one random step in G. (U)

Check if the current vertex contains a claw. (C)

Cost: $O\left(S + \frac{1}{\epsilon} \left(\frac{1}{\delta}U + C\right)\right)$.

Quantum (Magniez-Nayak-Roland-Santha):

Create a superposition of random vertices. (S)

Repeat $O(\frac{1}{\sqrt{\epsilon}})$ times:

Repeat $O(\frac{1}{\sqrt{\delta}})$ times:

Take one "quantum" random step in G. (U)

"Quantum" check for a claw. (C)

Cost:
$$O\left(S + \frac{1}{\sqrt{\epsilon}} \left(\frac{1}{\sqrt{\delta}}U + C\right)\right)$$
.

Tani: query optimal

$$\text{Cost: } O\left(S + \tfrac{1}{\sqrt{\epsilon}} \left(\tfrac{1}{\sqrt{\delta}} U + C \right) \right), \quad \epsilon = \tfrac{T^2}{N^2}, \quad \delta \approx \tfrac{1}{T}.$$

Jaques & Schanck (CRYPTO 2019)

- ► Cost = $O(T + \frac{N}{T^{1/2}})$.
- ▶ The cost is optimized when $T \approx N^{2/3}$, yielding a running time $\approx N^{2/3} = p^{1/6}$ degree- $\ell^{e/2}$ isogeny computations.
- ▶ A vertex has size 2T, so $p^{1/6}$ classical processors are needed in the active error control model.
- ▶ These $p^{1/6}$ processors (and $p^{1/6}$ classical memory) can be used with VW golden collision search with running time

$$\frac{p^{3/8}}{p^{1/6} \cdot p^{1/12}} = p^{1/8}.$$

Tani: Non-asymptotic cost estimates

Jaques & Schanck (CRYPTO 2019)

- ► The optimal T is chosen based on memory access costs and oracle costs.
- ► Tani suffers from the same parallelization issues as Grover (however, the naive parallelization strategy may not be optimal).
- Note that Tani's algorithm with T=1 is essentially the same as Grover's algorithm.
- Conclusion: Tani is costlier than VW
 - with MAXDEPTH = 2^{64}
 - DW-cost
 - G-cost

Concrete parameters for SIDH

- ▶ 128-bit security-level (also: NIST Categories 1 and 2)
 - $p = p434 = 2^{216}3^{137} 1$.
 - VW: $w = 2^{80}$, $\theta \approx 1/2^{13.6}$, Time = $2^{125.7}$ (isog.).

Protocol phase		CLN + enhancements p_{751} p_{434}	
Key	Alice	26.9	5.3
Gen.	Bob	30.5	6.0
Key	Alice	24.9	5.0
Gen.	Bob	28.6	5.8

(Times are in 10^6 clock cycles on an Intel Core i7-6700)

- ▶ 192-bit security level (also: NIST Categories 3 and 4)
 - $p = p610 = 2^{305}3^{192} 1$.
 - VW: $w = 2^{80}$, $\theta \approx 1/2^{35.9}$, Time = $2^{192.6}$ (isog.).
- ▶ p434 and p610 have been included in the Round 2 SIKE submission to the NIST PQC competition.

Questions

- Can the analysis of VW golden collision finding be made more rigorous?
- ► Can the CSSI problem be formulated as one of finding a single collision (not a golden collision)?
- Are the assumptions on classical resources and quantum resources reasonable for making long-term key-size recommendations?
- ► Can Tani's algorithm be parallelized in a cost-effective way?

References

1. G. Adj et al.

"On the cost of computing isogenies between supersingular elliptic curves" SAC 2018.

- S. Jaques and J. Schanck "Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE" CRYPTO 2019.
- 3. S. Jaques "Quantum cost models for cryptanalysis of isogenies" Master's thesis, http://hdl.handle.net/10012/14612